

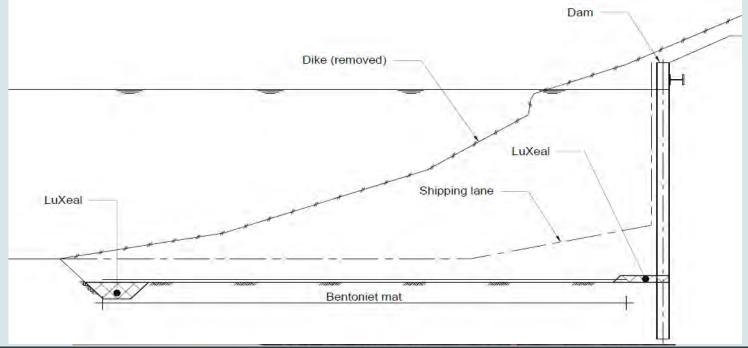
DEME

Dredging, Environmental & Marine Engineering

LuXeal – the easy to handle aquitard

François De Keuleneer (DEME-Group) Luc Goiris (DEME-Group) Ties van der Hoeven (DEME-Group)

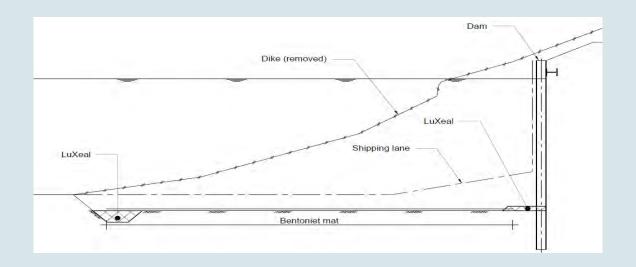
WODCON XXI – 17th June 2016



2. Needs

1. Ensure a watertight continuity on both sides of the bentonite matrasses

2. Be used as temporary watertight layer close to sensitive locations



3. Specific requirements

1. Determine the necessary watertightness using the Darcy law

$$Q = \frac{K_0 \times H_0 \times x_0}{L \times \cos \alpha} \times \left(1 - \frac{x_0 \times \tan \alpha}{2 \times H_0}\right) \left[\frac{m^2}{s}\right]$$

 \checkmark

2. Find an easy to place material for which

- No compaction is needed
- An acceptable placement tolerance (5cm) is achievable
- A local and cheap supply is feasible

4. Development and tests

4. Development and tests

Challenge :

 Find an easy to place watertight layer

Different solutions:

- Clay?
- Sand mixed with bentonite?
 - Concrete?

Different solutions -> different problems

Clay

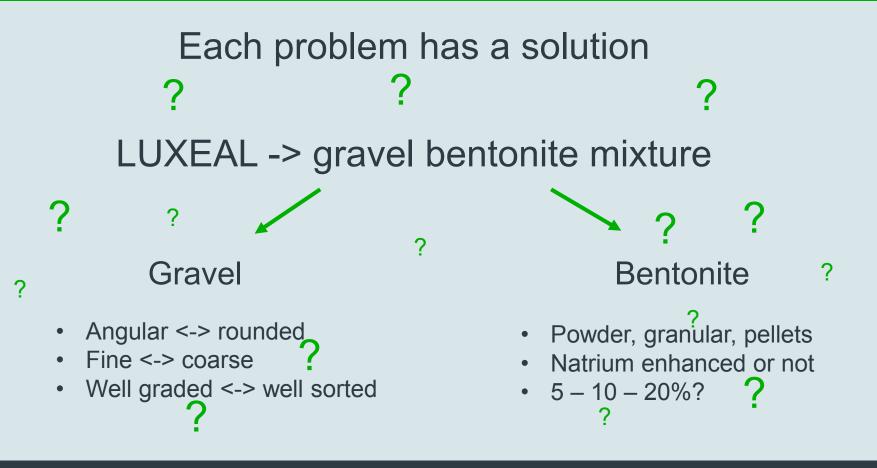
- Need for compaction
- Very difficult to place underwater
- High turbidity

Different solutions -> different problems

Sand bentonite mixture

- Need for compaction
- Poor resistance to current
- Also difficult to place underwater

Different solutions -> different problems


Concrete

Brittle behavior -> Cannot heal

itself

• Price

 \checkmark

Laboratory tests

First tests in DEME's own laboratory

Problems

- Geotextile by-pass or clogging
- Limited possible height of layers
- Variable water
 pressure

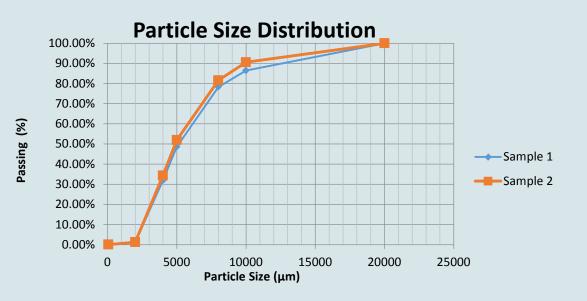
Laboratory tests

 First tests at the University of Liège according to the NF X 30-44 norm

Problems

- Geotextile by-pass
- Wall effect
- Limited diameter

 \mathbf{i}

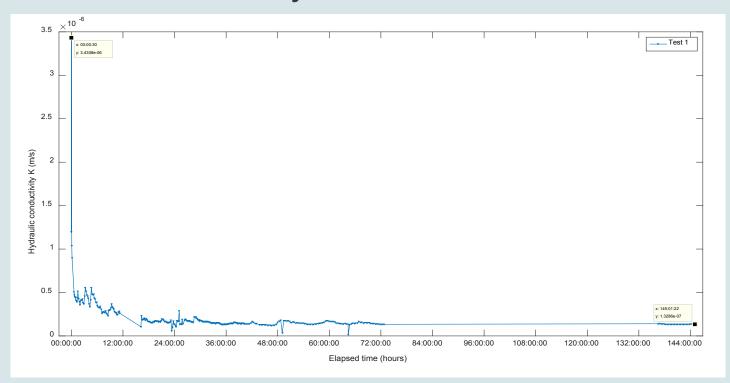

Laboratory tests

- Development of a new test cell together with the ULg
- Heigth => 700mm
- Diameter => 190mm
- Possibility to properly fit a geotextile

Gravel

Bentonite

- Granular => 0.5 2.0mm
- Sodium enhanced bentonite with a swelling capacity of 1250% its dry weight
- 6% of total mixture weight has been retained as optimal proportion



Laboratory tests : Results

Property	Silt layer	Silt layer	Silt layer	Mixture	Mixture	Mixture	Mixture	Mixture
		(t=1 h)	(t=16 h)	(t=0 h)	(t=1 h)	(t=3 h)	(t=58 h)	(t=264 h)
Length (mm)	130	130	130	370	370	370	370	370
Diameter (mm)	190	190	190	190	190	190	190	190
Inj. Pressure (bar)	0.835	0.750	0.725	0.725	0.725	0.725	0.725	0.725
Hydraulic head (m)	8.35	7.5	7.25	7.25	7.25	7.25	7.25	7.25
Permeability (m/s)	2.15 10-6	1.54 10 ⁻⁶	3.22 10-6	5.42 10 ⁻⁶	1.36 10-6	8.89 10 ⁻⁷	2.54 10-7	2.68 10-7

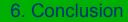
Laboratory tests : Results

Large scale tests

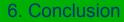
- Area => 30x25m = 750m²
- 20 cm of LuXeal
- Covered after 4 days

5. Discussion

5. Discussion



- Problems in the development
 - Lack of knowledge
 - Non-existence of standardized test and certified laboratories
- Results
 - The goal has been achieved => a hydraulic conductivity of 2*10^-7 m/s with an easy to place mixture
 - The efficiency of the LuXeal is questionable when placed on very permeable soil (K > 10^{^-5} m/s)
 - The mixture can easily be placed using a bucket


6. Conclusion

- The gravel-bentonite mixture offered an cheap and easy to place alternative to the well-known materials such as clay, concrete and sand-bentonite mixture
- Further research will focus on obtaining a watertight mixture that can reach lower hydraulic conductivities on more permeable substrates
- The innovation and its further development convinced the management of De Vries & van de Wiel to apply for a patent on the invention

Entrepreneur of the Year® Onderneming van het Jaar® 2015

