

WEDA Central America Chapter Panama City, September 13-15, 2016

Marcel Boor, Product Director

The technology innovator.

Developments in dredging technology

Evolution vs Revolution

Revolution

Revolution

Modern high efficient diesel engines

Design modifications

• CFD simulations; streamline pattern at inlet

Design modifications

CFD simulations; vortex strength

CS1 CS2

Remaining vorticity significantly weaker (~4x)

Ball passage control

Rock Special

Cutter Special

Lab Measurements – Efficiency

Scaled to full size; HRCS 240-50-100, 3-bladed; 267 rpm

Direct drive Submerged dredge

Cutterhead developments

Alternative designs

Spud Guard: the issue

Basic idea

Conventional

SpudGuard

Balance safety and cutting force
Increase of workability
Interchangeable with conventional spud carriage

Cutter Suction Dredgers:

IHC Beaver series

- 6th generation
- Built for stock!
- >800 pcs delivered

	Beaver 300	Beaver 40	Beaver 45	Beaver 50	Beaver 65 DDSP
Installed power	240 kW	447 kW	746 kW	1350 kW	2819 kW
cutter power	30 kW	50 kW	110 kW	170 kW	700 kW
dredging depth	6 m	8 m	10 m	14 m	18 m
Discharge pipe diameter	260 mm (12")	390 mm (16")	450 mm (18")	500 mm (20")	650 mm (26")

Increase of scale

4550 tons

Increasing scale

5970 tons

6570 tons

7150 tons

Year	Name ship	Hopper capacity	Deadweight	Length	Breadth
1994	HAM 311	3522 m³	4640 tons	84,95 m	17,00 m
1997	HAM 312	3518 m³	4640 tons	84,95 m	17,00 m
1999	Volvox Atalanta	4500 m ³	5870 tons	84,95 m	17,00 m
2000	HAM 317	4400 m³	6667 tons	84,95 m	18,40 m
2003	Volvox Olympia	4750 m³	7140 tons	84,95 m	19,90 m
2004	Pallieter	5600 m ³	7980 tons	84,95 m	21,60 m

New versus traditional hull shape

- Up to 25% fuel savings
- Less waves in port
- Higher sailing speed
- Shorter cycle times
- Higher productions

TSHD - Dragheads

Hard soil draghead?

Fuel technology in the dredging sector

- Man-powered
- Horse-powered
- Fossil fuels: Coal (steam) & Oil (diesel)
- Electric dredgers (hydrodam reservoirs/mining plants)
- Fuel-cell technology (hydrogen, not yet suitable)
- Future: Battery charged / changeable batteries?
- LNG

Emission reduction

Exhaust gas emission regulations (SO_x, NO_x)

Energy Efficiency Design Index (CO₂) Sustainability ambitions

Emission reduction

How to comply to emission regulations:

- Switch to Marine Diesel Oil:
 - \Rightarrow 30-50% more expensive than HFO
- Switch to Low Sulfer Heavy Fuel Oil:
 - ⇒ limited availability
 - ⇒ higher cost price
- Use Heavy Fuel Oil:
 - ⇒ after treatment of exhaust gasses necessary
 - ⇒ high investment costs
 - ⇒ poor earn back potential
- Use LNG

LNG

Compared to heavy fuel oil LNG reduces:

- SO_x emission by approx. 99%
 NO_x emission by approx. 85%
 CO₂ emission by approx. 25%
 Particulate Matter by approx. 99%

Compliant to SO_x, NO_x and EEDI regulation Earn back potential due to lower price

Location LNG tank

LNG storage:

- Size of LNG storage tank:
 - LNG storage needs twice the space of diesel storage
- Position of LNG tank
 - Below / above deck
 - Single / double walled
 - Safety zones
- Large impact on vessel lay out

Load step capability:

Diesel engines have better load step capability than LNG engines

Availability of LNG

Bunkering:

Truck

Bunker ship

Bunker station (gate terminal)

Containerized

LNG bunker ship Rotterdam (6500 m3, 2016)

World's first LNG powered hopper dredgers...

Other applications: Delta Escort Tug T100-15

Other applications: Delta Escort Tug T100-15

- LNG fueled
- Battery boost
- 100t bollard pull

- Fiber rope escort winch
- Shock absorbers-500t snatch load

Conclusions

- Emission regulations will have impact on ship design
- ✓ LNG is a economical viable alternative, due to its earn back potential on fuel price
- LNG storage has impact on ship design
- Load step capability can be critical, additional measures might be necessary
- LNG class rules add extra complexity to design and engineering
- LNG is a sustainable and feasible answer to strict emission regulations

Turbidity and air

B. Decrop, 2015:

"the presence of air bubbles in the overflow has the potential to increase the surface plume concentrations with a factor 5 to 10"

Airless Overflow

- Reduce turbidity by reducing air bubbles in the overflow plume
- Prevent possible damages resulting from air underneath the vessel

Airless Overflow

- Small lab tests to identify flow regimes and understand air enclosement
- Try different principal solutions to prevent air entering the overflow
- Understand necessary boundary conditions

Airless Overflow

First prototype test on Easydredge 2700

Chocked flow Moving parts under water High wear

Free flow No moving parts Easily replaceable add-on

IHC Plumigator

Instrumentation & Automation

IHC Eco Pump Control

The impact of automation...

The Easydredge® series

	Easydredge™ 1600	Easydredge [™] 2700	Easydredge™ 3700
Length overall	71.75 m	81.75 m	92.95 m
Breadth moulded	14.00 m	15.80 m	16.30 m
Hopper volume	1,600 m³	2,700 m³	3,700 m³
Dredging draught (design)	4.50 m	5.50 m	6.20 m

The IHC Beagle® series

	Beagle 6	Beagle 8
Length overall	m	104.50 m
Breadth moulded	m	24.20 m
Hopper volume	6,000 m³	8,000 m³
Dredging draught (design)	6.50 m	7.80 m

(R)evolutions in dredging

Huge efficiency improvements due to:

- increase of scale
- efficient engines and gearboxes, hydraulic pumps/systems
- efficient dredgepumps
- efficient cutter heads and dragheads for different soil types
- improved reliability
- increased wear resistance longer lifetime of wearing parts
- Automation (Automatic Pump control / Automatic Trailspeed control)
- ergonomic improvements
- increased working window (swell compensators / spudguard system)
- Remote access
- Standardisation

Conclusion:

Overall efficiency is determined by multiplying the efficiency factors of the individual components

