

Sediment Reuse for Wetland Creation and Open Space Restoration in an Underserved Community of San Francisco

Case Study of Yosemite Slough, San Francisco Bay

Authors: Deni Chambers CHG; Elizabeth Nixon, PE; Scott McLaughlin, PE; Axel, Rieke, PE

Project Objectives

Site Conditions

Planning

Implementation

Challenges & Successes

PROJECT VISION

- CPSRA General Plan (1987): restoration of natural areas
- Regional goal: restoring native habitats along SF bay front
- Restoration of tidal marsh habitat, recreation, educational center
- Better balance of environmental/societal/ economic impacts and benefits

PROJECT OVERVIEW

- Centerpiece of plan to create a 34-acre wetland and park in the Candlestick Point State Recreation Area within the Bayview Community
- Will be the largest contiguous wetland area in SF and California's first urban state park

 Funding and approvals required the collaboration of government agencies, regulators, philanthropists, foundations, and community groups

PROJECT OBJECTIVES

- Protection of ecological and human health and safety
- Regulatory and stakeholder acceptance
- Provide access to outdoor recreation and open space

Cleanup goals:

- ✓ <u>wetlands</u>: mean concentrations = near-ambient concentrations for San Francisco Bay sediments
- ✓ <u>uplands</u>: direct contact or recreational ESLs according to designed land use

STAKEHOLDERS

- California Department of Parks and Recreation (property owner)
- California State Parks Foundation (funding "wrangler")
- City/County of San Francisco Departments, Redevelopment Agency
- San Francisco Bay Regional Water Quality Control Board
- US Army Corps of Engineers
- Bay Conservation and Development Commission
- Bay Area Air Quality Management District
- Philanthropists
- Immediate and local community
 - Bayview/Hunters Point neighborhoods
 - Community and environmental organizations
 - Arc Ecology, Alliance for a Clean Water Front, Bayview Hunters Point Community Advocates, Clean Water Fund, Golden Gate Audubon Society, Literacy for Environmental Justice, University of San Francisco

INTEGRATION OF REMEDIATION/RESTORATION

A plan is visualized, then...

- 1. Initial concept design
- 2. Stakeholder involvement
- 3. Investigation
- 4. Characterization (CSM)
- 5. Update design
- 6. Construct/restore
- 7. Open to the public
- 8. Iterative process

SITE CONDITIONS

 Upland area developed with buildings, pavement (20%); filled urban land, bay land, and tidal flats (80%)

- Property used for import fill/debris, light industrial/commercial development (auto salvage/wrecking yard), utility corridor, collection of storm/sanitary overflow
- Vacant land vegetated with ruderal (non-native) species
- Up to 20 feet thick, mixed, non-engineered fill with moderate levels of contamination (heavy metals, naturally occurring asbestos, TPH, PAHs)
- Adjacent channel identified as "PCB hot spot"; lead and nickel

RESTORATION DESIGN TEAM

Northgate: environmental impacts assessment, remediation planning, and construction oversight

WRA (project lead): landscape design, biology and wetland restoration planning

Noble Engineering: hydrodynamic analysis and civil engineering design

California State Parks Foundation: project proponent, public outreach and fundraising

Planning

RESTORATION PLANNING

- Removal of historic bay fill
- **Functioning tidal marsh**
- Nursery areas for fish, benthic organisms
- Transitional, upland buffers
- Two bird nesting islands
- Portion of the Bay Trail
- Passive public-use areas

ECOLOGICAL BENEFITS AND IMPACTS

BENEFITS

- Restore tidal wetland habitat (12 acres)
- Remove/sequester contaminated soils, debris
- Restore habitat diversity
- Remove invasive species
- Improve soil and water conservation
- Catalyst for further cleanup activities within Yosemite Slough and vicinity

IMPACTS

- Erosion (runoff, dust)
- Air Quality impacts
- Waste generation
- Impacts mitigated using monitoring and Best Management Practices during construction

COMMUNITY BENEFITS AND IMPACTS BENEFITS IMPACTS

- Expanded open space (ethical and equity consideration, dense urban area)
- Recreational trails, linked to regional trails
- Amenity services (enhances local living conditions by the provision of an attractive environment)
- Native plant materials collected and grown by local students
- Health and safety
- Catalyst for other recreational, open space opportunities along the Bayview/Hunters Point shoreline

- Initial mistrust and resistance from community
- Construction traffic, noise
- Land use restrictions

ECONOMIC BENEFITS AND IMPACTS

BENEFITS

- Employment: local jobs, volunteers, youth groups, local businesses
- Direct/indirect economic benefits
 - Increased visitor use of park
 - Decrease in costs related to City responding to illegal dumping
 - Remediation = indirect economic benefits

IMPACTS

- Costly and complex funding
 - Over 10 public and private funding sources
 - CSPF raised \$14.3 million for
 Phase 1 construction 17 acres
 - Phase 2 = \$15M 17 acres (currently fundraising)
 - Phase 3 = \$5M education and recreational facilities, trails, etc. (in design)

REMEDIATION/RESTORATION

- Phase I ESA, Phase II characterization
- Three phases of restoration

Remediation / soil management in all three phases
 Completed in series, dependent on funding

- Environmental mitigation and risk management approach
 - ✓ Soil Screening Criteria
 - ✓ Cover Design
 - ✓ Soil Handling
 - ✓ Soil Treatment
- Restoration design plans and specifications

Implementation

DESIGN OBJECTIVES

- Beneficial reuse of soil for:
 - Tidal marsh habitat
 - Upland recreational uses
- Segregate and recycle debris for offhaul
- Lead contaminated soil stabilized, offhauled, and properly disposed
- Encapsulated serpentinite fill (naturally occurring nickel and asbestos)
- Reduce transportation needs, fill import/export
- Training or job opportunities for local community
- Improve storm water, recharge quality
- Collaborative decision-making, community events and public meetings

15

CHALLENGES

- Funding: no possibility of increasing the budget
- Uncertainties in field conditions required flexibility to adapt during construction
 - Example: more debris than anticipated, budget constraints limited off-haul/import
- Collaborative decision-making
- Highly visible project, actively involved local community
 - Environmental justice concerns
 - Redundant air quality mitigation, monitoring
 - Community meetings, fact sheets, outreach w/ local youth/environmental/faith communities

16

Challenges & Successes

RESTORATION PROGRESS

- First phase complete
- Achievements and successes
 - Funding/decisionmaking took longer than anticipated, but construction schedule accelerated
 - \checkmark 2 years \rightarrow 5 months
 - ✓ Tidal barrier breached!
 - ✓ 7 acres of new tidal marsh

RESTORATION PROGRESS

- Stormwater infiltration improved; erosion/sediment runoff minimized
- Risk pathways eliminated; post-construction air quality improved
- Biodiversity goals on-track; non-native species removed, revegetated with locallygrown native plants

- K-12 environmental science, public participation education
- First steps towards becoming a model urban park

NEXT STEPS

- Yosemite South restoration
 ✓ 13 acre restoration, 5 acres of wetlands, cost: \$15M
- Interpretive center, parking, trails, picnic tables, restrooms, lawns, cost: \$4M
- Risk management plan
 - Erosion control, long-term
 O&M for wetland and upland
 cover

- Annual monitoring/reporting for five years
 - Performed by Park staff and volunteers, overseen by qualified wetlands biologist
- Ongoing economic and public outreach influences
- **SUCCESS:** Site functions as typical bay tidal marsh habitat!

Questions

DENI CHAMBERS, CHG, President

Office (510) 839-0688, Ext. 216 Cell (510) 381-2322 Deni.chambers@ngem.com

SCOTT MCLAUGHLIN, PE, Senior Engineer

Office (510) 839-0688, Ext. 216 Cell (530) 400-1086 Scott.mclaughlin@ngem.com

20