1

REDUCING ENVIRONMENTAL EXPOSURES FROM DREDGING CONTAMINATED SEDIMENT

ROBERT S. WEBB, P.E., PAUL FUGLEVAND, P.E. & TEAL DREHER P.E. (DOF - DALTON, OLMSTED & FUGLEVAND, INC.)

> WEDA DREDGING SUMMIT & EXPO JUNE 2019 CHICAGO, ILLINOIS

Residuals, Resuspension & Release

Defined as contaminated sediment found at the postdredging surface of the sediment profile

Classified as either

- Undisturbed residuals
- Generated residuals

Resuspension & Releases = Downstream Risk

Residuals Two Approaches

APPROACH #1: Residuals Happen

- Residual concentration = average of cut
- Need sand cover after dredging
- APPROACH #2: Residuals Can Be Significantly Reduced and Potentially Eliminated
 - Apply Lessons Learned
 - Do Better
 - ► Engineer

Approach #2: Method Development & Implementation

- Head of Hylebos: 2004-2006
- Duwamish Waterway Early Action Area: 2012-2015
- Specific Client Risk Drivers and Objectives for Both Projects
 - Once and Done!
 - Reduce Risks
 - Residuals
 - Releases Down Stream Losses
 - Volume Uncertainty
 - Eliminate Containment

Approach #2: Common Characteristics

- Remediation Dredging Methods (RDMs)
 - Accurate DTM
- Method Specifications
- Best Value Contractor Selection
- Competitively sourced T&M
 - Qualifications
 - Costs
- Active Construction Management
 - Daily Adaptive Management
 - On board Dredge Engineer

"Keep It Neat and Tidy"

Remediation Dredging Methods (RDMs)

- 2. Precision Dredge Plan DTM
- 3. Engage Contractor Staff
- 4. Dredge to Design Grade
- 5. Precision Excavator
- 6. Double Arc Closing Bucket
- 7. RTK-GPS 3D Positioning

- 8. No Overfilled Buckets
- 9. Derrick for Debris Removal
- 10. Stair-step Cuts on Slopes
- 11. Dredge Slopes with Excavator
- 12. Manage Water No Barge Overflow
- 13. Active Technical Oversight
- 14. Place Initial Backfill

Engineer on Dredge

KOMATSU

- Full time Observer on Dredge (DOF)
- Located in Excavator Cab next to Operator
- Observe Material Types in Bucket
- Generate Electronic Logs
 - Cause & Effect!

Ongoing Refinements

Productivity

- Dredge Time
 - Effective Working Time Dredging

- Non Effective Working Time Everything Else!
- Reduce NEWT as Practicable!
- Electronic Logs by Observer
- Adaptive Management

Dredge Time

9

	1st year	Subsequent Years
% of Dredging Time (EWT¾)	46.9%	64.0%
Non-Effective Work Time (NEWT) Category		
Waiting for Sediment Scow	15.5%	14.8%
Other	11.1%	6.7%
Moving Dredge	12.0%	6.7%
Water Management	16.0%	2.3%
Repairs	12.1%	2.6%
Computers and Positioning Electronics	4.5%	3.6%
Maintenance	3.0%	0.8%
Weather/Tides	0.2%	1.8%
Tug Delay	0.1%	2.0%
Water Quality	0.0%	0.2%
Traffic	0.3%	0.3%

Data from Hylebos, Duwamish & Hudson River

Ongoing Refinements

Cycle Time

Efficient Precision (60 to 90 seconds)

- ▶ 100,000 CY @ 5 CY per cycle = 20,000 cycles
- Inefficiencies add up quickly

Bucket Fill Factor (FF)

Overfilled buckets are significant source of residuals

- Fuller buckets = higher production = more overfilled buckets and increased residuals
- ► Typically 50% FF over project, Target 80% Max.
- Balance Production Rate with Quality

Method Specifications

11

 Prescriptive Specifications
Typically Avoided
Sediment Remediation is Non-Typical Work
Technology Transfer & Lessons Learned
Understanding of Construction and Contracting Necessary

Best Value Contractor Selection

- Not the Time or Place for Low Bid Lump Sum
- Competitively Sourced T&M
 - Qualifications
 - Costs
 - Competitive Cost Selection for All Resources Potentially Needed.
 - Up-Front Pricing
 - ▶ No "Bid it to Win It, Change Order to Margin It"
 - Change Management More Efficient
 - Contractor Creativity to Owners Benefit

Duwamish Waterway Sediment Remediation Project

- Industrial/Residential waterway located in Seattle, WA
- 3 dredging seasons (2013-2015)
- 161,392 cy of sediment removed
- MOB, DREDGING AND LANDFILLING \$295 per CY

Duwamish Outcomes

Releases Controlled

- 2 exceedances of WQ over 3 years of dredging
- Resuspension Controlled
 - Turbidity exceed 5 NTU over background on 14 events

14

Exceedances ranges from 5 to 18 NTU's above background

Generated Residuals Controlled

- 19 ug/kg PCBs post dredge average
- 2% of dredged material concentration
- Undisturbed Residuals Controlled
 - No Undisturbed Residuals 1-2 ft. below post dredge
 - Less than 15 ug/kg PCBs

Summary

Proper Use of Remedial Dredging Methods (RDM's) Can Reduce or Eliminate Residuals

- Team Effort
- Avoid Costly Re-dredging
- Schedule Certainty

Questions?

Contact Information: Rob Webb (DOF) rwebb@dofnw.com

