wood.

Sand Particle Size Analysis by SedImaging in a Field Lab

Greg Horstmeier+, Jerry Eykholt+,

Carrie Kempf⁺, Roman Hryciw^{*}, and Andrea Ventola^{*}

+Wood E&IS

*University of Michigan

Outline

- Objectives
- Applications
- Methods
 - Pre-processing
 - Imagery
 - Particle Size Distribution (PSD) generation
- Results
 - Replicate Analysis
 - Examples
- Conclusion

Objectives for our Project

- Pilot a field lab method to generate *high-resolution* Particle Size Distributions (PSDs) on grab samples without a sieve set or oven
- Detect subtle variations in the fine sand and fines compositions

Other Applications for FieldSed

- High-resolution, detailed PSDs compared to sieve-based PSDs
- Image sets can also be analyzed for color, roundness, angularity, porosity
- Field lab and same-day analysis opportunities
 - Reliable QA/QC on sand materials
 - Post-dredge cover or bank restoration media
 - Filter media for caps
 - Beach media
 - Discrimination of natural particles vs. anthropogenic debris (plastics, coke/char, etc.)
 - Support for projects that might characterize sands separately from fines

Methods

- SedImaging and FieldSed were developed at the University of Michigan
 - Prof. Roman Hryciw
 - Continually being refined
- FieldSed = SedImaging in a field lab
- Three steps
 - Pre-processing
 - Imagery
 - PSD generation

Step 1: Pre-Processing

Measurements applied for all tests:

- Specific gravity, G_S
- Container weights
- Weight pre-sorter tube with water

W_{EW}

Dry weights (calculated):

- Mass soil passing #10: $W_{2+3} = \frac{G_S * (W_{Pre} W_{EW})}{G_S 1}$
- Mass decanted fines: $W_3 = W_{2+3} \frac{G_S * (W_{Post} W_{EW})}{G_S 1}$

Step 1: Pre-Processing

• Sample in pre-sorter tube before (left) and after (right) decanting fines

After

Step 2: Imagery

Loading the sedimentation column

Step 2: Imagery

- After settling, the column is moved to the imaging station
- Software used to
 - Set focus
 - Take multiple images
 - Focus stacking

Sedimentation column

Rubber base

Indexing pins to set sedimentation column

Resulting image of a fine sand (part 1 of 6, top)

• 0.1 mm

• 0.2 mm

1 mm

2 mm

wood

Resulting image (2 of 6)

1 mm

2 mm

Resulting image (3 of 6)

Resulting image (4 of 6)

• 0.1 mm

• 0.2 mm

0.4 mm

1 mm

2 mm

Resulting image (5 of 6)

• 0.1 mm

• 0.2 mm

0.4 mm

() 1 mm

2 mm

Resulting image (6 of 6, bottom)

• 0.1 mm

• 0.2 mm

0.4 mm

() 1 mm

2 mm

Step 3: PSD Generation

- Algorithm to obtain unadjusted PSD for each photographed side of the column
- PSD "snapped" to oversized (> 2 mm) and undersized (< 0.075 mm) grains
- Each adjusted PSD (one for each photographed side of the column) was then averaged into one composite PSD

Result Examples and Replicate Analysis

Effective Dia	meters (mm)	Coefficients	Summary of Particle Size Distribution	
D ₁₀ : 0.27 D ₂₀ : 0.35 D ₃₀ : 0.43	D ₅₀ : 0.64 D ₆₀ : 0.75 D ₈₀ : 1.16	C _u : 2.8 C _c : 0.9	< 2 mm = 90.2% < 0.420 mm = 29.2% < 0.075 mm = 0.9% = 0.1% = 0.9%	medium sand or finer fine sand or finer fines, total fines, as imaged fines, decanted

Result Examples and Replicate Analysis

Effective Diameters (mm)		Coefficients	Summary of Particle Size Distribution	
D ₁₀ : 0.13 D ₂₀ : 0.16 D ₃₀ : 0.17	D ₅₀ : 0.21 D ₆₀ : 0.22 D ₈₀ : 0.28	C _u : 1.7 C _c : 1.1	< 2 mm = 100.0% medium sand or finel < 0.420 mm = 97.3% fine sand or finer < 0.075 mm = 2.6% fines, total = 1.5% fines, as imaged = 1.1% fines, decanted	

Benefits of FieldSed

- Quantitative field measurement
- High-resolution
- Reduces uncertainty of classifications based solely on visual inspection
- Time and money savings
 - No offsite shipping
 - No oven drying
 - Not a full sieve set
 - Multiple sedimentation columns in parallel
 - Potential for same-day results
- Several applications (e.g., particle forensics, field-based QA/QC)

