Vibracore Sediment Acquisition Monitoring

for Remediation Dredging Design Portland Harbor Superfund Site, Portland OR

> 2021 WEDA Virtual Dredging Summit June 15–17, 2021 Zoom

> > Paul Fuglevand Dalton, Olmsted & Fuglevand, Inc.

Topics

- Conventional Vibrocoring
- Vibracore with Sediment Acquisition Monitoring (V-SAM)

2021 WEDA Virtual Dredging Summit

Conventional Vibracoring

Vibracoring

EQUIPMENT

- Aluminum or plastic tubes
- 5' 20' long
- Vibrating head attached to top of tube
- Core catcher at bottom of tube

METHOD

- Position tube on sediment bed
- Activate vibratory head
- Advance core tube into sediment
- Retract tube and process

Core Recovery Parameters – %R Only 2 data points to interpret results

Drive Length = L_{DT}

Recovered Length = L_{ST}

Percent Recovery $%R = (L_{ST}/L_{DT})x100$

$$%R = 6'/10' = 60\%$$

Range of %R < 50% to > 100%

- Material type
- Methods
- Equipment

Collecting Samples from Core Tube

- Collect samples every foot in core tube
- Analyze for target compounds
 - Exceeds contamination criteria
 - Passes contamination criteria
- Determine COCmax.
 - Deepest contamination in core tube.

From lab data $COC_{max} = 4$ feet.

Estimating In-Situ DOC for Dredging Design

From lab data

COC_{max} = Deepest contamination in core tube.

Convert COC_{max} to DOC
For dredging design
DOC = Estimated <u>In-Situ</u>
Depth of Contamination

using

Straight method Stretch method

Convert Core tube depths to In-Situ depth below mudline

Straight Method - "1:1"

Assume difference between L_{DT} and L_{ST} is due to loss out the bottom of the tube during retrieval

- 1-ft. in core tube = 1-ft. in-situ depth below mudline
- 4 ft COC_{max} in core tube = 4 ft in-situ DOC

Stretch Method - "stretch the core" linear interpolation.

Assume difference between L_{DT} and L_{ST} is due to

- uniform compaction during drive
- Uniform partial recovery during drive
- 1-ft. in core tube = (1/%R) in situ depth below mudline
 - For 60% R
 - 4 ft COC_{max} in core tube = (4/0.60) = 6.7 ft in-situ DOC

Vibracoring with V-SAM

Sediment Acquisition Monitoring (V-SAM)

V-SAM Equipment

V-SAM Equipment

Core Acquisition Curve

Process Core Tubes wit V-SAM

Acquisition Curve for samples

Core Tube Sampling Plan

Core Segment	Target In-Situ bml (ft)	Core Tube Location (ft)
Α	1	0.8
	2	1.2
	3	1.6
	4	1.9
	5	2.3
	6	3.2
	7	4.0
	CUT	4.0
	7	4.0
В	8	4.8
D	9	5.8
	10	6.6

Depth of Contamination (DOC)

- Collect a sample every <u>in-situ foot</u> increment of core
- Send samples to lab to test for target chemicals
- DOC "Depth of Contamination" is deepest sample above criteria

Concentration > criteria

4.0 4.8 5.8 6.6

CUT

V-SAM and DOC Variations

EXAMPLE DOC Calculation

 $COC_{max} = 4.5 \text{ ft.}$

Estimate DOC by methods:

- Straight: DOC= 4.5'
- Stretch: DOC= 6.2'
- V-SAM DOC= 7.5'

Range of DOC estimates: 4.5' to 7.5'

EXAMPLE DOC Calculation

COC_{max}

(ft)

4.5

4.5

4.5

4.5

L_{ST}

Method

4.5

4.5

4.5

4.5

 $COC_{max} = 4.5 \text{ ft.}$ DOC by methods:

%R

111%

72%

52%

51%

- Straight
- Stretch
- V–SAM

Acquisiti

on Curve

Α

В

	16			100%R
าท	15	++++		
<u>on</u>	14	 	 	\
	13	 		
	1 €12	 		++++1
	<u>5</u> 11	 		-
	<u>₹</u> 10	++++		++++
	October 2012	++++		++++
	8 E	+		++++
	흑 7 🖳		// 	++++
	6			++++
	5 5			- - -
	· ₄ 4		17777	- + + +
	3			-
	2		+++++	++++1
DO	C bml (ft)		Variation	++++
	%R		of DOCs	
	Method	V-SAM	(ft)	13 14 15 16
	4.2	4.1	0.3	t)
	6.2	7.5	3.0	
	8.7	4.6	4.2	100%R

Limitations of V-SAM

New Technology. V-SAM Challenges encountered in past year

- Not in shallow water when fathometers not submerged
- Off-gassing of organic sediment methane bubbles blind fathometer
- Floating debris/wood in tube can blind fathometer
- Fathometer at top of core tube can't use piston for improved recovery
- Added labor and reduced production compared to conventional

CITATION

Fuglevand, P.F., Lamb, C., Browning, D., and Jaworski, B. 2021. "Vibrocore Sediment Acquisition Monitoring (V-SAM) for remediation dredging design at the Portland Harbor Superfund site." *Proceedings WEDA Dredging Summit & Expo '21*, June 15-17, 2021. Virtual conference.

