

Engineering, Construction and Best Management Practices for TLP Projects

Presented by Ram Mohan, PE, PhD, F. ASCE

Co-Authors: Candice Piercy, PhD, and Tim Welp

2021 WEDA Conference

TLP - Design Considerations

- Design parameters include
 - Site geometry
 - Thin layer thickness
 - Marsh-to-channel surface area ratios
 - Volume of available dredge material
 - Cut-to-fill ratios
 - Schedule/frequency of filling
 - Site capacity and operational life

TLP - Design Considerations (cont.)

- Characteristics specific to placement site
 - Discharge points
 - Location, orientation, and their impacts on dredging logistics (production rates, booster pumps, construction duration, and costs)
 - Fill needs alignment with dredge production needs (timing/schedule, holding capacity, geometry, etc.)
 - Water drainage
 - Effluent management

Bob Blama (Former USACE) Sediment Site Capacity - Rule of Thumb

Sediment Type	Footprint Volume (cy/acre-ft)
Silt	800
Mixed	1,000
Sand	1,200

Pipeline Corridor Design and Access

- Impact of pipeline length and layout on fill placement method and construction costs
- Booster pump considerations
 - Pressure changes near pumps; optimal distance
 - Impacts: Noise, navigation, etc.
- Optimal corridor width for placement, maintenance, and work limits (e.g., 60 to 100 ft)
- Corridor survey requirements
- Construction equipment requirements

General Placement Considerations

- Evaluate number of lifts and lift thickness
- Hydraulic sorting
 - Sand deposits near discharge
 - Fine-grained material settles further away
 - Build containment and channeling structures?

- Match sediment characteristics with lift capabilities
 - Sandy channel areas versus wetland lift areas
 - Decrease material flow points (wetland fringe, beaches)
 - Fine-grained material and thinner lift areas

Source: USACE ERDC – Bailey et al., 2017

General Placement Considerations (cont.)

- Pipe discharge points
 - Single vs. multiple, and when to switch?
- Placement areas on site
 - Single vs. multiple
 - Maximize placement capacity

- Placement strategy
 - Place while advancing/retreating
 - Consolidation/settlement
- Tidal elevation
 - Influence on work window
 - Effluent: TSS/turbidity

Summary: Common Design Elements

Placement Area Layout	Placement Site Capacity
Project Area (Limits of Work)	Target Elevations/Depths
Channel/Borrow Dredge Volumes	Dredge Material Characteristics
Marsh Elevation Target	Consolidation/Settlement
Placement Tolerances	Equipment Type
Pipeline Layout	Access Corridors (Pipelines/Equipment)
Buffer Zones	Construction Access & Staging Areas
Erosion/Sediment Control	Sediment Transport (During/After Placement)
Flood/Scour Protection	Real Estate Considerations
Sediment Biogeochemistry	Planting/Restoration
Containment Systems (if any)	Turbidity Control
Environmental Impacts	Permit Conditions
Contractor Incentives (M&P)	Long-Term Monitoring

Construction Considerations

- Requires coordination and cooperation between:
 - Owner, Contractor, and Stakeholders
- Role of Specifications and Contractor Work Plan
- Project execution
 - Safety first!
 - Adaptive Management should be incorporated into construction phase as well

Source: https://qph.ec.quoracdn.net/main-qimg-b2f3c1af916f729567f8a57456b7b0c7c?convert_to_webp=true; bryanridgley.com

Suggested Contractor Work Plan Contents

- Construction equipment types (land and water-based)
- Equipment access routes and staging area(s)
- Site Access channel dredging, or roadways/mats?
- Dredge
 - Channel or borrow area dredging plan and schedule
 - Pipeline corridor
 - Dredge pipe type, diameter, thickness, and length
 - Schedule for layout (booster), installation, maintenance, and removal
- TLP Site:
 - Containment features and schedule
 - Placement layout, grade stake placement, and fill schedule
 - Dredge production rates, lift thickness to be monitored during placement
- Construction survey methodology and data processing software
- Post-construction restoration plan

Sediment Control Structure Considerations

- Intended application: lateral sediment containment, maintain/promote creeks, drainage, etc.
- Design configuration, installation, and maintenance requirements
- Removal requirements

Construction Equipment Considerations

- Evaluate for operational performance in site-specific conditions; and to minimize impacts to wetlands
- Operating areas should be designed, and best management practices employed to further reduce impacts

Dredging Equipment Considerations

- Sediment characteristics
- Dredge depth and quantities
- Distance to placement area
- Dredge types
- Method(s) of placement
- Production rates
- Environmental considerations
 - Physical environments
 - Contamination levels

Source: http://www.dredge.com

Sediment Deposition Equipment Considerations

- Equipment should be able to efficiently achieve design target elevation(s) while minimizing impacts on wetlands and dredge production
- Project-specific conditions that can influence equipment selection include:
 - Placement area dimensions and layout
 - Type of sediment
 - Dredge production and access
 - Lift thickness to meet design target elevation

Pepper Creek DNREC

Other Considerations

- Constructability
 - Measuring attainment of grade
 - Survey grade stakes, etc.
 - Placement accuracy
 - Lift thickness and tolerance

- Cost
 - Economies of scale
 - Phasing of costs
 - Planning, design, construction, monitoring
 - Cost reduction strategies

Source: USACE ERDC – Bailey et al., 2017

Lessons Learned - Ideal Application

- TLP is best for projects where:
 - Elevation has been lost considerably (from subsidence or sea level rise)
 - Natural sediment inputs alone are insufficient to nourish the marsh over time
- TLP is not well suited for degraded marshes affected by invasive species or sediment overloads
- TLP should be a "restoration" project, and not designed as a "dredged material placement" (or "disposal") project

Lessons Learned - Design

- Protect key features (edges, channels/creeks)
- Material/Elevation Balance:
 - Bulking noted: 2-4 times in situ
 - Shrinkage: 10-40% in first 10-15 days
- Vegetation responds well to TLP generally in the range of 6-12 in
- Recovery times vary, but is generally on the order of 2-5 years
- Natural recovery is possible, particularly for thin (<12 in) placement
 - Natural recolonization is preferred
 - Planting should therefore be a secondary (contingency) criterion

Managing Dredged Material Via Thin-Layer Disposal in Coastal Marshes

Lessons Learned - Construction

- Well engineered design is key to success
 - Use experienced engineering and construction teams to avoid costly field changes and/or delays
 - Avoid redundancies
- Do not overengineer or overprescribe
- Prequalify contractors
 - Evaluate for demonstrated experience on similar projects
 - Weed out ones with violations
 - Provide the contractor with the ability to innovate in the field
- Adaptive management can be key to success

Use TLP as ONE of the Tools for Managing Coastal Adaptation of Wetlands

- Wetlands enhance coastal resiliency by acting as buffers
- There are many restoration tools:
 - Control edge erosion
 - Enhance sediment supply
 - Manage water balance
 - Improve drainage
- Adaptive management is key!
 - Re-nourish as needed, if feasible
 - Control invasive species
 - Facilitate marsh migration
 - Remove dead trees and upland barriers
 - Conserve lands in potential migration pathways

Questions?

Candice.D.Piercy@usace.army.mil
Timothy.L.Welp@usace.army.mil
rmohan@tamu.edu

