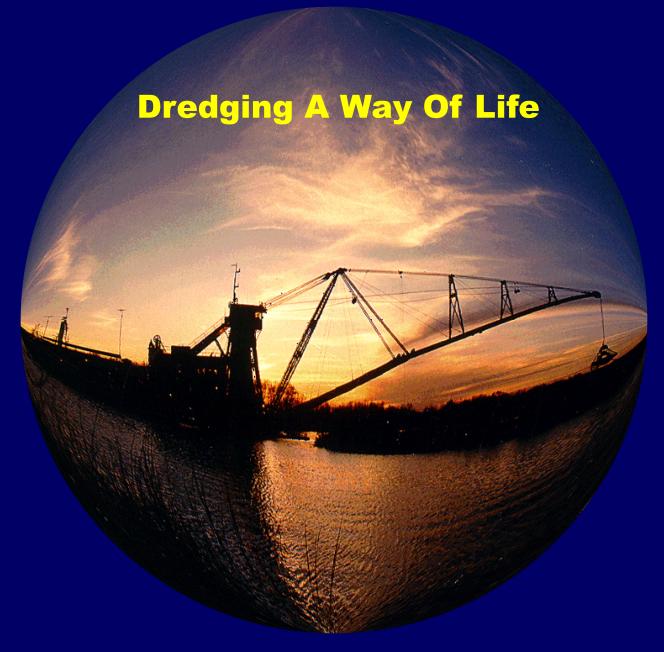


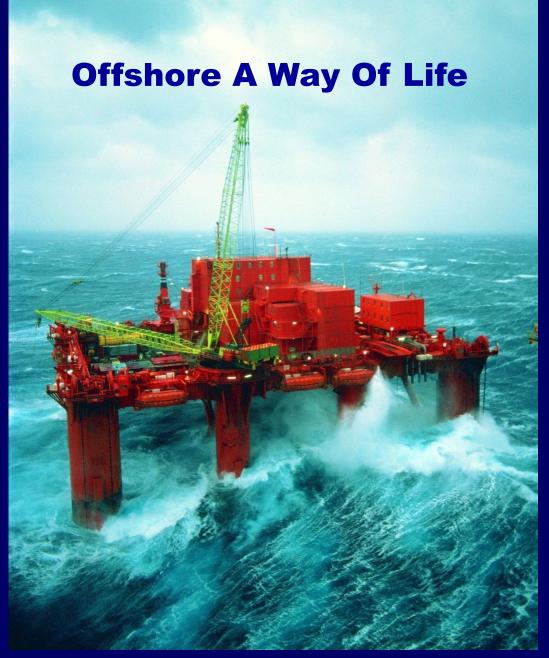
Scour Protection Rock Dumping

Dr.ir. Sape A. Miedema **Head of Studies MSc Offshore & Dredging Engineering** & Marine Technology **Associate Professor of Dredging Engineering**

Thursday, June 17, 2021

Delft University of Technology





Delft University of Technology – Offshore & Dredging Engineering

Delft University of Technology – Offshore & Dredging Engineering

What is Offshore & Dredging Engineering?

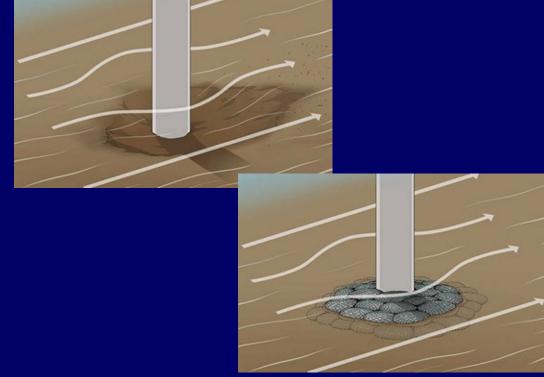
Offshore & Dredging Engineering covers everything at sea that does not have the purpose of transporting goods & people and no fishery.

Problem Statement

During rock dumping to protect monopiles from scour, the pieces of rock will penetrate the seafloor.

- What should be the size of the rock pieces.
- Which volume of rock will penetrate the sea floor.

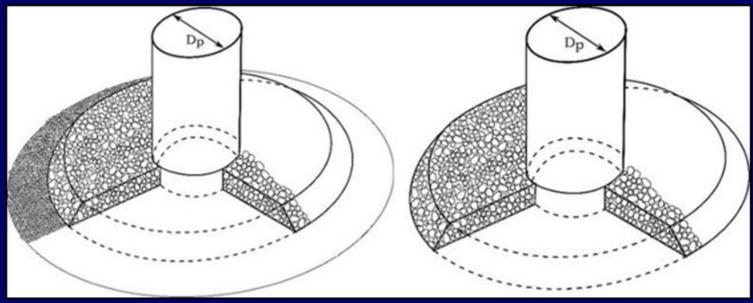
An Offshore Wind Farm


Reference

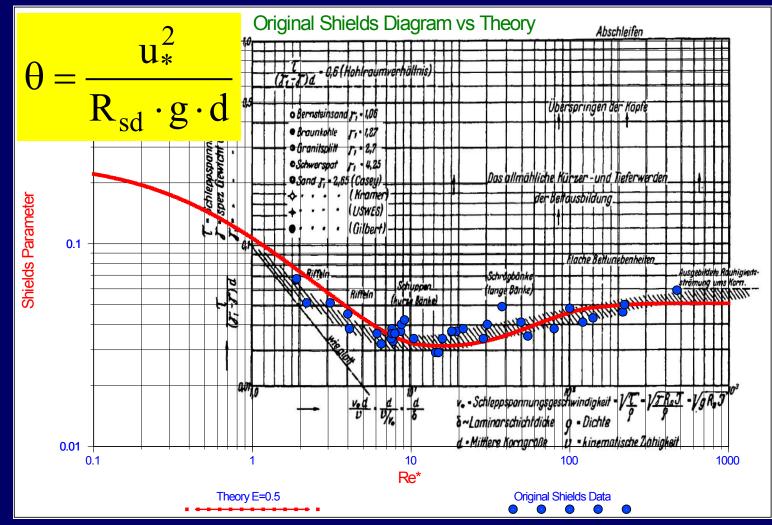
Beemsterboer, T. N. (2013). Modelling the immediate penetration of rock particles in soft clay during subsea rock installation, using a flexible fallpipe vessel. Delft, the Netherlands: Delft University of Technology.

Scour & Scour Protection

Delft University of Technology – Offshore & Dredging Engineering

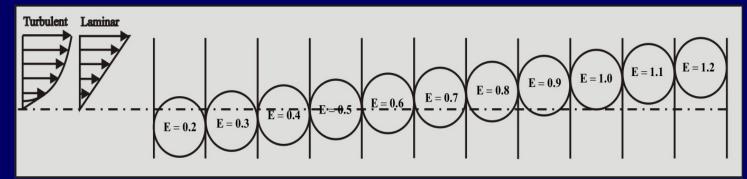

A Monopile with Scour Protection

Scour Protection With and without filter layer

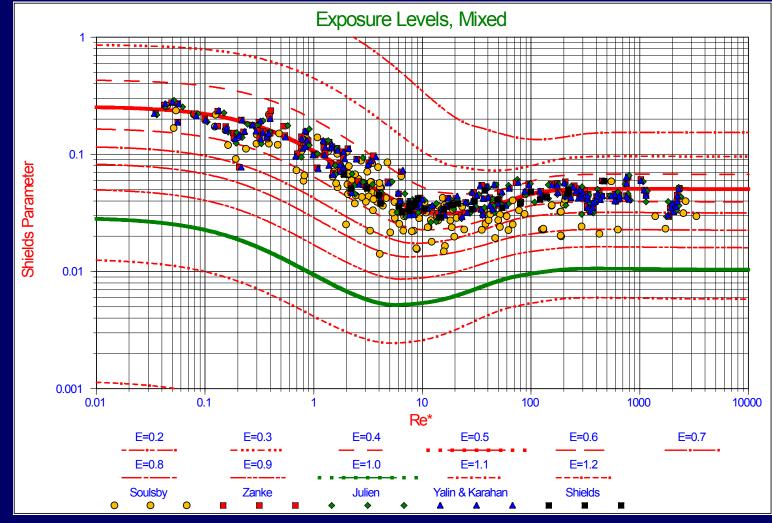

TUDelft Delft University of Technology Offshore & Dredging Engineering

Some Examples

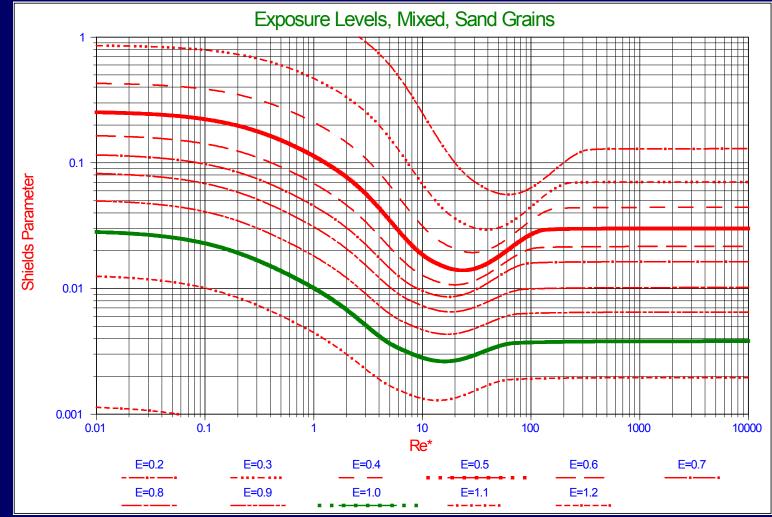
Characteristics	Arklow Bank	Egmond aan Zee	Horns Rev	Princess Amalia	Scroby Sands
Mean sea level (m)	8	20	14	24	12
Foundation diameter (m)	5.0	4.6	4.2	4.0	4.2
Driving length of pile	35	30	34	30	30
Soil type	Sand	Sand	Sand	Sand	Sand
Soil d ₅₀ (mm)	0.20	0.20	0.15	0.45	0.40
Filter d ₅₀ (m)	0.05	0.05	0.20	0.17	0.15
Filter thickness (m)	0.60	0.40	1.00	0.90	1.00
Filter layer diameter (m)	45	53	44	52	54
Armor d ₅₀ (m)	0.42	0.40	0.55	0.50	045
Armor thickness (m)	1.20	1.80	1.80	1.50	1.300
Armor layer diameter (m)	35	41	34	40	34
Significant wave height (m)	5.6	3.6	5.2	7.7	3.2
Wave peak period (s)	9	8	6.3	9.7	8.1
Current velocity (m/s)	2.0	0.6	1.2	1.3	1.7
Orbital velocity bottom (m/s)	2.7	0.7	1.2	1.6	1.1
Relative roughness (-)	0.05	0.02	0.04	0.02	0.04


The original Shields diagram

Exposure Levels - Protrusion Levels



Delft University of Technology – Offshore & Dredging Engineering

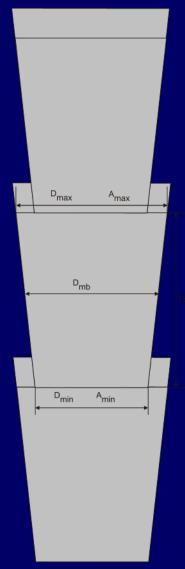

Exposure Levels Both (Spheres)

Different protrusion levels (sand)

Stone Size versus Flow Velocity

$$\theta = \frac{u_*^2}{R_{sd} \cdot g \cdot d}$$

$$d = \frac{\frac{\lambda_b}{8} \cdot v_b^2}{R_{sd} \cdot g \cdot \theta} = \frac{\frac{0.06}{8} \cdot v_b^2}{1.65 \cdot 9.81 \cdot 0.01} = 0.044 \cdot v_b^2$$


v _b (m/s)	d (m)		
1	0.044		
2	0.176		
3	0.395		
4	0.703		
5	1.098		
6	1.580		

The Fall Pipe with Buckets

Delft University of Technology – Offshore & Dredging Engineering

The Velocity in the Fall Pipe

$$\Delta p_g = \Delta p_{tot}$$

$$(\rho_{m} - \rho_{l}) \cdot g \cdot L_{b} = (\lambda_{DW} + \lambda_{C}) \cdot \frac{L_{b}}{D_{mb}} \cdot \frac{1}{2} \cdot \rho_{l} \cdot v_{mm}^{2}$$

$$v_{mm} = \sqrt{\frac{\left(\rho_{m} - \rho_{l}\right)}{\rho_{l}} \cdot \frac{2 \cdot g \cdot D_{mb}}{\left(\lambda_{DW} + \lambda_{C}\right)}}$$

Kinetic Energy Stone 1

$$v_{exit} = v_{mm} \cdot \left(\frac{D_{mb}}{D_{min}}\right)^{2}$$

$$\mathbf{v}_{t} = \frac{10 \cdot \mathbf{v}_{1}}{\mathbf{d}} \cdot \left(\sqrt{1 + \frac{\mathbf{R}_{sd} \cdot \mathbf{g} \cdot \mathbf{d}^{3}}{100 \cdot \mathbf{v}_{1}^{2}}} - 1 \right)$$

$$v_{th} = v_t \cdot (1 - C_{vs})^{2.4} \cdot e^{-\frac{d}{D_{mb}}}$$

Kinetic Energy Stone 2

if $SOD < 6.3 \cdot D_{min}$ then $v_{sf} = v_{exit}$

if SOD>6.3 · D_{min} then
$$v_{sf} = \frac{6.3 \cdot D_{min}}{SOD} \cdot v_{exit}$$

$$v_{\text{stone}} = v_{\text{sf}} + v_{\text{th}}$$

$$E_{kin} = \frac{1}{2} \cdot m \cdot v_{stone}^2 = \frac{1}{2} \cdot \rho_q \cdot \frac{\pi}{6} \cdot d^3 \cdot v_{stone}^2$$

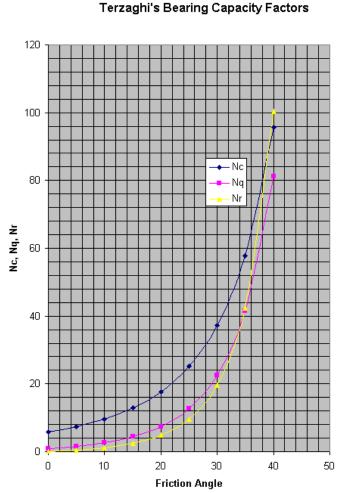
Delft University of Technology – Offshore & Dredging Engineering

Terzaghi Equation, Bearing Capacity

Stone footing:

$$F_{BC} = A_{stone} \cdot \left(1.2 \cdot c \cdot N_c + \gamma \cdot p_d \cdot N_q + 0.4 \cdot \gamma \cdot W \cdot N_{\gamma}\right)$$

$$N_{q} = \frac{\left(e^{(3\cdot\pi/4 - \phi/2)\cdot tan(\phi)}\right)^{2}}{2\cdot cos^{2}(\pi/4 + \phi/2)}$$


$$N_{c} = \frac{\left(N_{q} - 1\right)}{\tan\left(\varphi\right)}$$

$$N_{\gamma} = 1.5 \cdot (N_{q} - 1) \cdot \tan(\varphi)$$

Terzaghi Values

N_c	N_q	\mathbf{N}_{γ}
5.7	1	0
7.3	1.6	0.5
9.6	2.7	1.2
12.9	4.4	2.5
17.7	7.4	5
25.1	12.7	9.7
37.2	22.5	19.7
57.8	41.4	42.4
95.7	81.3	100.4
172.3	173.3	297.5
258.3	287.9	780.1
	5.7 7.3 9.6 12.9 17.7 25.1 37.2 57.8 95.7 172.3	5.7 1 7.3 1.6 9.6 2.7 12.9 4.4 17.7 7.4 25.1 12.7 37.2 22.5 57.8 41.4 95.7 81.3 172.3 173.3

Kinetic Energy = Work

$$p_{d} \cdot \left(F_{BC} + F_{g} - F_{b}\right) = E_{kin} = \frac{1}{2} \cdot \rho_{q} \cdot \frac{\pi}{6} \cdot d^{3} \cdot v_{stone}^{2}$$

$$p_d = \frac{E_{kin}}{F_{BC} + F_g - F_b}$$

Conclusions

- The Shields approach for real sands and gravels is a good approach to determine the size of the rock pieces in the armor layer.
- For the penetration of the rock pieces in the sea floor a modified Terzaghi equation is used.
- The assumption that the kinetic energy of the rock pieces equals the work carried out while penetrating the sea floor, seems to be a good assumption.

Questions?

