REDUCTION OF THE EMISSIONS FOR TRAILING SUCTION HOPPER DREDGES

Michael Beton

04 August 2022

Contents

PROBLEM DESCRIPTION

EMISSION MODEL

EMISSION REDUCTION METHODS

RESULTS / CONCLUSION

Introduction: Problem Description

- Restrictions on emission pollution
- Environmental Protection Agency (EPA)
 - Adopted International Maritime Organisation (IMO)
 - reduce CO_2 by 40% by 2030 and 50% by 2050 compared to 2008
 - reduce NOx (currently Tier III)
 - reduce SOx (currently 0.1% m/m)
- Better understand the current emission profile

Introduction: Research Questions

- Main Questions:
 - What is the total emission profile for THSDs during operations?
 - What are viable methods to reduce their emissions?
 - Emission model
 - Research into emission reduction methods

Emission Model

Methods: Emission Model

• Input

- Dredge: Dimensions and specifications
- Visor type: Fixed or floating visor
- **Discharge method**: Discharge by pipeline or discharge by bottom dumping
- **Power arrangement**: Direct drive or Combined drive
- Job specifics i.e. sail distance
- Speed and acceleration
- Discharge specifics i.e. grain size / pipeline length

Introduction: Working Principle

• Mechanical: Direct power arrangement dredge 1

Phases	Auxiliary	Pumping	Manoeuvring
Loading	Gen	JP & DP	ME
Transit Loaded	Gen		ME
Connection	Gen		ME & BT
Discharge	Gen	JP & DP	ME
Disconnect	Gen		ME & BT
Transit Empty	Gen		ME

Methods: Emission Model

- Main parts
 - Hull resistance
 - Trailing resistance
 - Cutting Forces / Resistance
 - Propeller efficiency
 - Engine & propeller matching
 - Required power other engines

- Required power discharging
- Required power auxiliary
- Fuel consumption
- Emissions

Methods: Emission Model Total Trailing Resistance

Figure 9: Total Trailing Resistance Fixed Visor source: Emission Model

Total Trailing Resistance with a Floating Visor

Methods: Emission Model Overview

Amount to be Dredged			768135	m3	/
Density Soil Hopper			1,95	ton/m3	3
Dredging Depth			12,8	m	
Water Depth Sailing			12,8	m	
Minimum Water Depth Sa	iling		7,0	m	
Distance with Min. Water	Dept	:h	1000	m	
Water Density			1,0253	ton/m3	3
Estimated Soil Density			15	blows/	foot
Fixed Visor Min Angle			40	deg	
Fixed Visor Max Angle			50	deg	
Sailing Distance (one way)			5093	m	
			X		
Discharge Meth	od	Pump		-	
					_
Vi Vi	sor	Floating		-	
					_
Drec	lge			-	
					_
Power Arrangem	Power Arrangement			-	

e			
875	m		
4,39	m/s		
30	inch		
1,296	ton/m3		
5,9	m/s		
0,91	knots		
9,50	knots		
10,50	knots		
on			
58	kn/h		
-46	kn/h		
74	kn/h		
-85	kn/h		
Fuel Specifications			
45640	kJ/kg		
541	\$/m3		
0,846	ton/m3		
а			
4134	GPD		
	e 875 4,39 30 1,296 5,9 0,91 9,50 10,50 on 58 -46 74 -85 etions 45640 541 0,846 a 4134		

	Results per Opera	ation	1. Load Dredg
/	CO2 Emissions	3,48 kg/m3	
	SOx Emissions	6,34 g/m3	
	NOx Emissions	21,27 g/m3	2. Load P.A.
	Fuel Consumption	1,32 L/m3	
	Fuel Costs	0,72 \$/m3	3. Load Visor
	Carrying Capacity	3821 ton	
	Hopper Size	2754 m3	4 Load Propall
	Light Ship (weight incl. wate	3164 ton	
	Amount per Cycle	1809 m3	
	Nr of Cycles to Completion	425	5. Load Dischar
	Nr of Days to Completion	56,1	
	Nr ofCcycles per Day	7,6	Calculate All
	Estimated Euel Consumptio	3983 GPD	
	Offset versus Daily Data	-4%	
	Overflow Percentage	10%	

10

Methods: Emission Model - Output

CO2 emissions (kg/m3)

SOx emissions (g/m3)

NOx emissions (g/m3)

Fuel Consumption (L/m3)

Fuel Costs (\$/m3)

All values in terms of m3 dredged material

Results: Emission Model

- Multiple variations between theory and practise
- Adjustments model
 - Total resistance dredge increased by 10%
 - Specific fuel consumption engines increased by 10%

Job	Daily Data	Emission Model	Unit	Offset
#1	11.24	11.29	L/min	+ 0.4%
#2	11.64	11.23	L/min	- 3.7%
#3	11.30	11.27	L/min	- 0.3%
#4	10.88	10.46	L/min	- 4.0%

Emission Reduction Methods

Methods: Emission Reduction Methods

Model Related

- Optimal trailing speed (Production versus Fuel Consumption)
- Optimal sailing speed (Speed versus Fuel Consumption)
- Prediction
 - Exchange of engines and parts
 - Draghead configurations
 - Propeller pitch

Practical

- Power arrangement
- Propeller type
- Scrubbers
- Engine shut off

Results: Emission Reduction Methods

Conclusion

Emission Model

- Multiple causes of variations between model and practise
- Accuracy within 4% on L/min
- Possibilities for expansion, i.e more drive types / engine profiles
- Possibilities for increasing accuracy
- Emission Reduction Methods
 - Model and practise based
 - Reduction emission possible
 - Further research recommended

REDUCTION OF THE EMISSIONS FOR TRAILING SUCTION HOPPER DREDGES

Michael Beton

mbeton@gldd.com

04 August 2022

