

## A Texas Coast-Wide Project to Restore Wetlands through the Beneficial Use of Dredged Material – Beneficial Use Design

Rick Coupe, Anchor QEA, and Carter Coleman, Ducks Unlimited

WEDA Dredging Summit and Expo 2022, Houston, Texas



## Introduction





## Design Objectives

- Programmatic Goal: Develop "shovel-ready" BU sites along Texas Coast that can be utilized for public and private dredged material
- Project-Specific Goals
  - Select sites, develop 60% designs, and prepare permit applications for BU sites along the Texas Coast
  - 8 sites selected from pool of 160+
  - 2 alternate sites selected
  - End goal to create healthy high marsh with tidal connectivity



## Siting Criteria

- Suitable for tidal estuarine marsh habitat
- No armored protection required
- Target open water areas
- Held by willing property owners
- Located near sediment source(s)
- Limited natural and cultural resource concerns
- Site identified (positively) elsewhere





## Data Collection

- Elevation Surveys
  - Open water bottom elevation
  - Marsh edge and platform elevation
  - Access open-source elevation data (USGS, TNRIS, etc.) to develop DEM
- Site-Specific Water Surface Elevation
  - Utilize publicly available date (NOAA tide gauges, etc.)
  - Develop frequency distribution curves
- Healthy Marsh Vegetation Surveys
  - Identify healthy marsh vegetation populations at each Site
  - Survey specific elevation range in which
    various species thrive





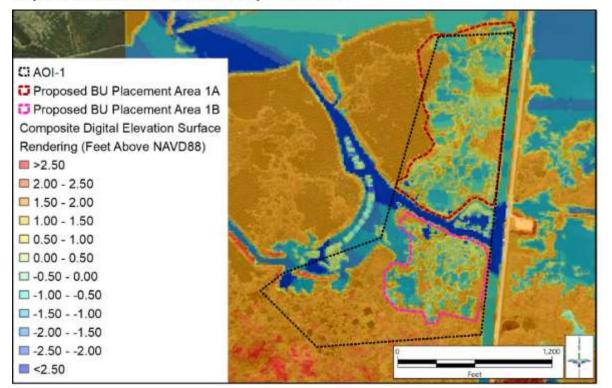
## Survey Coverage Examples

**2020 Site Survey Points** 



Aerial Imagery Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

**2020 Site Survey Points** 



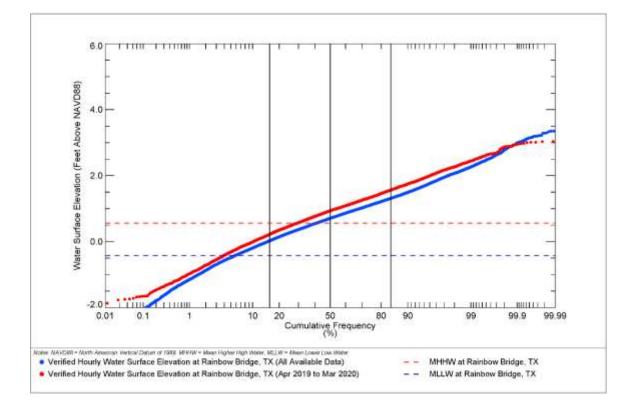

Aerial Imagery Source: USDA FSA (NAIP)



## Data Analysis – Digital Elevation Models

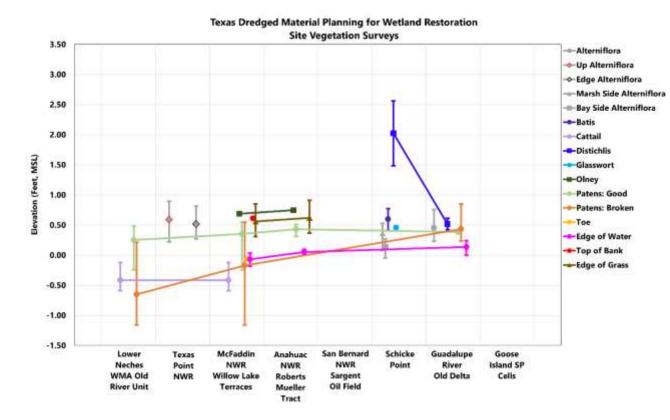
Proposed 30% BU Placement Area Footprints in AOI-1




Aerial Imagery Source: 2018 USDA NAIP (USDA 2018)

- Combine open-source LiDAR with field survey data
- Useful to visualize areas of broken marsh and high points
- Used in combination with other data to identify potential placement areas




## Data Analysis – Water Surface Elevation Frequency Distribution Curves

- Utilized locally available NOAA tide gauge date
  - Long-term
  - Lots of data points
  - Site-specific (hopefully)
  - Some gauges not tied to NAVD88
  - RLSR trends apparent in many data sets
- Used curves in concert with healthy vegetation surveys to develop proposed top of marsh and subsequent containment elevations



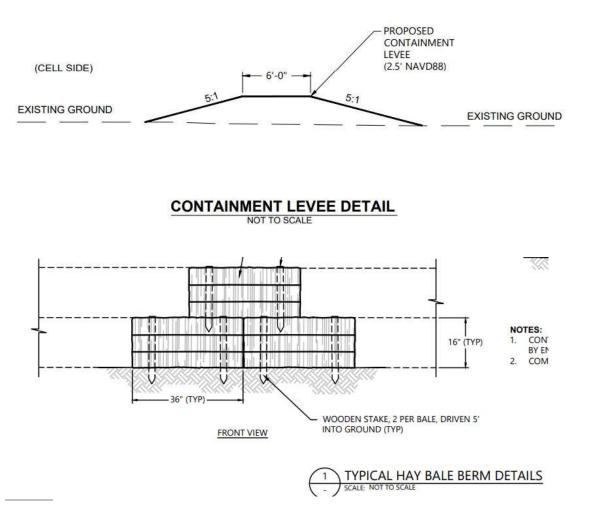


## Data Analysis – Healthy Marsh Elevations



- Used in concert with survey data, WSE, and DEM to develop proposed top of fill and containment elevations
- Some regional variability in the data meaning site specificity important
- Helped to target specific species based on ideal elevation ranges




## **BU Material Placement**



- Assumed open pipe discharge
- Final desired surface to mimic existing marsh with tidal influence and drainage
- Proposed final placement elevation based on survey data, DEM, WSE analysis, and healthy vegetation surveys
- Placement elevation range of 0.5 to 1.0 ft MSL used for all sites based on data analysis
- Ranges from 0.5 ft up to 1.5 ft NAVD88 were selected for the various sites based on local datum conversions from MSL
- Chose higher end of marsh elevation to accommodate some RLSR effects



## **Containment Construction**




- Typically side-cast from on-site material, if possible
- Other options left open at 60% level to allow for flexibility
  - Hay bale berms
  - Silt fence
  - Dredged material berms
- Due to interior marsh locations, some areas may not need 100% containment



## Site-Specific Cost Estimates

- Cost estimates developed for all sites
- Costs represent incremental cost beyond what USACE pays for dredging and placement
- Included
  - Permitting, design, and engineering costs to move to 100% design
  - Pre-construction surveys
  - Construction
  - Construction Management/Quality Assurance
  - Limited Planting
  - Post-Construction Monitoring
  - \_ 30% contingency





## Lower Neches WMA Old River Unit

#### **Sediment Source**

Sabine Neches Waterway

#### **Project Size**

224 acres

### **Total Volume**

~300,000 to 400,000 cy

### **Cost Estimate**

\$5.6M

## Data Collected

- 1,277 acres of Topo/bathy
- Healthy vegetation

## **Additional Data**

- NOAA shoreline
- Texas Natural Resources Information System (TNRIS) LiDAR
- Existing infrastructure

## **Identification Criteria**

- Elevation
- Drainage
- Infrastructure
- Containment



- Potential pipeline conflicts
- Potential right-of-access conflicts
- USACE levee project



## McFaddin NWR Willow Lake Terraces

#### **Sediment Source**

Sabine Neches Waterway

Project Size

218 acres

**Total Volume** 

~400,000 to 460,000 cy

**Cost Estimate** 

\$6.6 to 8.6M

## Data Collected

- 1,065 acres of Topo/bathy
- Healthy vegetation elevations

## **Additional Data**

- NOAA shoreline
- Existing infrastructure
- Existing as-built survey data

## **Identification Criteria**

- Elevation
- Drainage
- Infrastructure
- Containment
- Previous work done



Aerial Imagery Sources: USGS EROS, USDA FSA (NAIP), TNRIS StratMap (TOP)

- Project layout requires state and federal access agreements
- Site access



## Guadalupe Old River Delta

#### **Sediment Source**

Victoria Barge Canal

### **Project Size**

1,085 acres

#### **Total Volume**

~1.5 to 1.9 mcy

**Cost Estimate** 

\$19.6M

### Data Collected

- 1,430 acres of Topo/bathy
- Healthy vegetation
  Additional Data
- TNRIS LIDAR
- Existing infrastructure
  Identification Criteria
- Elevation
- Drainage
- Infrastructure
- Containment



- Potential right-of-access conflicts
- Private landowner
- Very large project area





## Next Steps

- Project substantially completed and Final Report submitted to TIG
- Future Actions
  - Develop 100% designs
  - Identify dredging projects
  - Implement BU sites along the Texas coast



THANK YOU



# Rick Coupe, PE

Staff Engineer Anchor QEA, Ocean Springs, MS rcoupe@anchorqea.com







## **Texas Point NWR**

### **Sediment Source**

Sabine Neches Waterway

## **Project Size**

623 acres

### **Total Volume**

~1.3 to 1.6 mcy

## **Cost Estimate**

\$11.4M

## Data Collected

- 1,762 acres of Topo/bathy
- Healthy vegetation

## Additional Data

- NOAA shoreline
- TNRIS LIDAR
- Existing infrastructure

## **Identification Criteria**

- Elevation
- Drainage
- Infrastructure
- Containment



- Potential pipeline conflicts
- Potential right-of-access conflicts
- Very large potential restoration areas
- Deep tidal channels and relatively large tidal exchange



## Anahuac NWR Roberts Mueller Tract

#### **Sediment Source**

GIWW

#### **Project Size**

552 acres

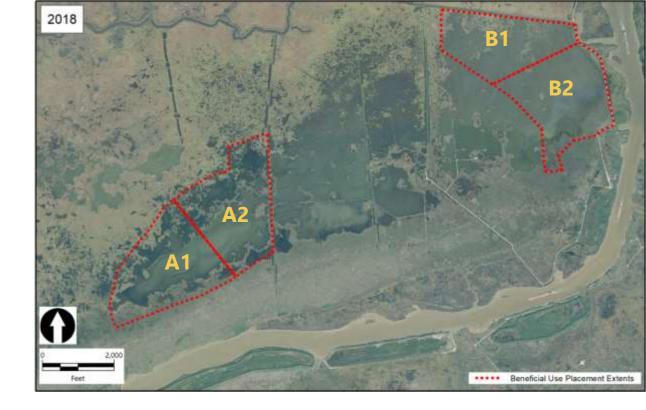
### **Total Volume**

~575,000 to 640,000 cy

#### **Cost Estimate**

\$12.6 to 16.4M

## Data Collected


- 733 acres of Topo/bathy
- Healthy vegetation elevations

## Additional Data

- NOAA shoreline
- Existing infrastructure
- Existing as-built survey data

## **Identification Criteria**

- Elevation
- Drainage
- Infrastructure (previous work by DU)
- Containment



- Potential pipeline conflicts
- Existing infrastructure



## San Bernard NWR Sargent Oil Field

#### **Sediment Source**

GIWW

### **Project Size**

201 acres

## **Total Volume**

~80,000 to 115,000 cy

**Cost Estimate** 

\$8.5 to 11.0M

## Data Collected

- 781 acres of Topo/bathy
- Healthy vegetation
  elevations

## Additional Data

- NOAA shoreline
- Existing infrastructure

## **Identification Criteria**

- Elevation
- Drainage
- Infrastructure
- Containment
- Proximity to GIWW



## **Challenges**

 Potential pipeline conflicts



## **Schicke Point**

### **Sediment Source**

Palacios Ship Channel GIWW

### **Project Size**

116 acres

### **Total Volume**

~180,000 to 240,000 cy

### **Cost Estimate**

\$5.2M

## Data Collected

- 167 acres of Topo/bathy
- Healthy vegetation

## Additional Data

- USGS LIDAR
- Existing infrastructure

## **Identification Criteria**

- Elevation
- Drainage
- Infrastructure
- Existing Containment / Protection
- Willing Landowner



- Potential right-of-access conflicts
- Distance from sediment source
- Private landowner
- Open water
- Dependent on breakwater constructed by others



## Goose Island SP Existing Beneficial Use Cells

### **Sediment Source**

TBD

**Project Size** 

23 acres

### **Total Volume**

~ 35,000 to 45,000 cy

### **Cost Estimate**

\$1.9 to 2.4M

## Data Collected

- 30 acres of Topo/bathy
- Reference vegetation elevations

## Additional Data

- NOAA shoreline
- Existing infrastructure
- Existing as-built survey data

## **Identification Criteria**

- Existing levees and restoration plan/footprint
- Some material placement historically



Aerial Imagery Sources: USGS EROS, USDA FSA (NAIP), TNRIS StratMap (TOP)

- Condition of existing containment levees
- Sediment source identification

