

SEAGRASS MITIGATION THROUGH WIND WAVE AND BOAT WAKE REDUCTION

Tyler Stanton, North Carolina Department of Transportation Erin Hodel & Mark Fonseca, Ph.D., CSA Ocean Sciences Inc. Phillip Todd, Atlantic Reefmaker

July 27, 2022

Project Need & Concept

- Impacts to seagrass from bridge construction estimated at 1.28 acres
- Lack of injury sites for traditional seagrass
 mitigation methods
- NCDOT fund experimental science project for seagrass coalescence
- Concept: employ "green engineering" to encourage natural coalescence of patchy seagrass

Background: Guiding Principles

1) As wave energy cover of seagrass

Recomputed from Fonseca & Bell, 1998

2) Seagrass abundance in lee of formations

Project Feasibility Study

- Eight options
- Factors reviewed/ studied
 - Mobilization challenges
 - Installation issues
 - Maintenance concerns
 - Costs
 - Estimated essential fish habitat (EFH) utility
 - Potential site impacts

Method	Installation Insets	Mutcharton Notes	Maintenance Biotti	Cost installed for 1900 linear feet (without transportation) all nutrition and rough externation and rough instruction and rough	Wave attenuation and estimated resiliency over "LOy	Cat. Dire anitry (loss) medium, high)	Potential site terpacts (Kower repacts result to a Nigher coore)	Partanta	anes.
Living Waye Barrier (28)	Weight, can be moved in variable emounts with associated costs of handling	Versetile because of piccenseal construction and completatively light 8h per picce 150	Limited potential for settling (5)	TBD: without deep archors as regulated for presence projects (not respand at this site); \$400 set linear fuot	High: solid objects embedded in shoal with an ability to maintain position single row effectiveness in wast dampening (5)	Moderate – high: sburdant surface pres for attachment and interatifial space for small faulte (4)	Low- noderate because of percenseal construction [4]	Specifically designed for wave breaking and optiming being established but based on well-known materials. One now of structures will suffice. Pre-designed	litaal/www.antitudes.com/n mai/013/ecologiana.lwng waxeelaarnat
Red Links (28)	weight: moved in love to moterate weight modulur units (Si	Versatile because of piecemeal contraction and comparatively light if per name (5)	Limited potential for settling (5)	\$125-250 pet Hnow Yoot	inge: solid objects both linked and embed ded in shoal with an ability to maintism position - single row offertiveness in	Maderbeier highly ebundant vurface ante för ettachmenk modifiabler to provide internet access to targer feuna (4)	Low- noderate because of piecemaal construction [4]	Spectrually designed for wave braining and observe habitat anwinon. Engineering being antabilities too bawad on well-known materials Der nove of translation with bafford. Fire designed Extremely satisable fabora bat waterial waterial services and second of bits wave emitty. Woodd tech require additional regionering table table second to break waves and remain tables. Loss and remain directors could addite transform. One music	Patent pending: CSA
Oyster reef (24)	Weight: can be moved in variable encounts with eccons of handling [3]	Versetia because of piccenesi construction 151	Potential addition of shdi over time due to changing geometry (depending (in recruitment) and settling (3)	\$45.55 per yd") En 1000 yd3 needad	Low-moderate based on endability vs. netural necultarent and growth success- single row effectiveness in wive tumpering if elevation can be tastaneet (2)	High: overant play the role of an ecosystem engineer if displaying successful recruitment (5)	tow- roderate because of processal construction (4)		ntau//mucares.com/ore/en Usofilestern/lyra_sherifes a_cost_estimates.of
Neaf Bals (34)	weight, moderate weight modular avtitutar	Versette because of percenses construction and comparatively light Mix per perce 150	Potential for setting (3)	Soll per lavear fact * estevates 4 rows for complete wave energy reduction	Moderate with objects but unknown als the to maintain prestain or the approximation system a connection system - maliple rows head for complete wave	Muslemon High; higher abardarit surface area for attacterent; muslikable to provide, enternal access to larger hause (4)	Subse modelight percaused of percenties construction (40)	Devend rokes to provide regulard looke attestation Pre-designed, Additional forming costs TBD	htta://www.apifiallanostraina autorithttas/costsillanostrain Merrica autorita/orthallanostrain Scillanostraina
Nigo-regi (725	Weight; variae moved to variable armutts with supplicated costs and panding res	Venatile because of presented contribution (1)	borve addition of rock over three due to changing generating and aetting (3)	\$128 perinsurfact	Low-Moderate: Absence of dructus Connectivity and highly dependent on size and material density - single new effective-raises in were demographic [2]	Monitorating advantiants surface areas for attractives at a d presentitical space for pread faces (5)	Low- moderate because of execonded construction (40	See Charge is permitivy over time will resulte planned matterations, Web established expressing. One row of structure will suffice.	htta://houdares.com/creciler Machineturio/bene. a.com.estimates.adf
Beach Pràine 131)	Wanghi, moxeel in moderate to hop weight modular weight modular weight (4)	Large modular adds require moderate heavy IPC(3)	Polanital for petting (3)	5127.50 per kasar Toot	Moderate-High: usid skpects but untreaven ability to maintain position in the support absense of a committion system - single row effectiveness in Wave discouncing (d).	Monkerseter, resultit teble to prinvite referral eccess to lenger favoro (4)	Moderate- high familation of famil involute convertantion (0)	United information on extual wave attenuation and habiter value. Solutive of permetry positionable. Cydrowie number of rows to present required wave after solution. First designed.	htadasoo kochaismaan L
Guillians (21)	Weight: can be moved in variable encounts with encounts of handling (3)	Versatile because of placament construction [3]	Contrainment, will detersorate, changing functional goownerry meshi matroiena nose every fear years porantial for setting (2)	тал	Low-Modelate: based on containment decay- ingle com affactionesis in wave dampering (2)	Moderate: abundant surface area for attactment and memorital assas for small leave (3)	Low- muster sto because of plectorreal potetractice (4)	Endanswort with bistuce opbiernatic bismane of animodegroutscoe and hypernetations containment with wice basins to pointure wound scenarizations wound scenarizations wound scenarizations wound scenarizations and the scenarization wound scenarization bisto problematic for animal animal mouse of abusctore works rows of abusctore	http://www.andenginering.c an/ananchitetaris-sentrat. eroexe.mitaateer,
WADS (19)	Weight; Housed in Huoderate to high weight modular	Large modular onto require nucleiate heavy infi (1)	Potential for settling (3)	WAD at \$180 to \$250 per knesi foot	Moderate - and multiple rows need for complete wave dampering (1)	Low: site ooth surfaces may limit attachment; restifuable to provide internal escales to larger faces (3)	Moderate- high because of fixed module construction (1)	Response at least 3 nows of structure. Stable but very heavy. Poe-daugreed, Astitional Reetosing costs TBD	Min//www.seaanithoreire.or art/Means attenuation- theite-walkitlant

Wavebreak Construction – Atlantic Reefmaker Ecodisks

- Pile-based, flow through system negligible substrate impact
- Mechanical support system set disks at designated design height
- Modularly constructed easy modification for SLR adjustments
- Perched above substrate movement of sand & marine life
- Scalable to wave environment
- Shape square & octagonal
- Porosity is changeable (20% & 0%)

67-84% decrease in wave energy (ERDC, 2020)

Study link – https://ewn.erdc.dren.mil/?p=7412

Project Approach

Forecast seagrass cover response to wave \downarrow

- Seagrass cover *f*(RWE) before *vs* after wall
- For every foot of wall, CSA forecast ↑ 150 ft² (13.9 m²) of seagrass
- 500' of wall = ~1.7 ac (0.69 ha)

Wavebreak Construction Using Atlantic Reefmaker Ecodisks

- Chevron shape, due North
- 101 square-shaped units; 500 ft long
- Wave energy dissipation with flow through system (20% porous)
- Seagrass from construction footprint relocated
- No dredging of construction access channel for implementation
- Low draft conditions

Monitoring Program

- Wave heights north & south
- Sediment elevation near-field & far-field
- Epibiota colonization of wavebreak
- Seagrass cover aerial imagery

Results: Wave Height

- Strongest wind events; thus, wave energy predicted from the north
- Daily wave height data alternation of higher waves on north and south sides
- Top 5% of wave heights occurred 5 times more frequently on the north side
- "Extreme event" results supported forecasted wind energy reduction zones

12/12/2016 06/20/2017 01/16/2018 06/04/2018 02/20/2019 09/06/2019 03/26/2020 10/12/2020 04/20/2021

Results: Sediment Elevation

- Near-Field: Sediment elevation along transects within 150 ft of wavebreak
- Far-Field: Digital Elevation Model (DEM) within ~118-acre area surrounding wavebreak

Results: Sediment Elevation

Sediment Scouring

- Scour pits developed under wavebreak
- Creation of "sand apron"
- Delayed colonization of transplanted seagrass
- Octagonal Reefmaker shape and alternative orientation in testing to alleviate scouring

Results: Epibiota Monitoring

- Substrates Rock (granite) vs. Concrete
- Elevation Low vs. Middle vs. High
- Colonization macroalgae, hydroids, barnacles, oysters, cyanobacteria
- Concrete primarily colonized by macro & barnacles
- Rock colonization = macro/barnacles → macro → macro/oysters
- 2-year lag for oysters, 8-12x higher cover on rock vs. concrete

Epibiota Monitoring Results

Percent Cover Total Biota

Rock (Granite)

Concrete

Results: Seagrass Mapping

Results: Seagrass Mapping

Total Acres Seagrass by Zone: Aug 2018 to Aug 2021

Change in Cover of Seagrass: Aug 2020 vs. Aug 2021

High (red) + Med (yellow) = + 1.77 acres (Aug 2020 to Aug 2021) High (red) + Med (yellow) = + 1.15 acres (Aug 2018 to Aug 2021)

Take-Aways

- Ecological services were enhanced: seagrass, seabirds, essential fish habitat (EFH)
- Net gain in seagrass cover
- Alternative Reefmaker unit shape and configuration may alleviate scouring
- Durable engineering solution to reduce wave energy (wind, boat wakes)
- Viable mitigation strategy, employed principles of "green engineering"

Project Recognition

An ATLAS Volume 2

Nomination Criteria: The project should relate to EWN key elements

- Using natural processes to maximum benefit.
- 3. In er
- Increasing the value provided by the project to include social, environmental, and economic benefits.
 - Using collaborative processes to organize and focus interests, stakeholders, and partners.

CONTACT US

Erin Hodel: <u>ehodel@conshelf.com</u> Dr. Mark Fonseca: <u>mfonseca@conshelf.com</u>

8502 SW Kansas Avenue, Stuart, FL 34997 Tel: +1 772-219-3000 <u>csa@conshelf.com</u>

Phillip Todd: P.Todd@atlanticreefmaker.com

2011 Corporate Drive, Unit #1 Wilmington, NC 28405 Tel: +1 919-971-5641 www.atlanticreefmaker.com

#SEATHEDIFFERENCE

