CAD Pit Design and Long-Term Risks for Contaminated Dredged Material at Piaçaguera Canal, Brazil

Thomas D. Borrowman
Research Civil Engineer
Environmental Laboratory

US Army Corps of Engineers
Environmental Laboratory, Coastal & Hydraulics Laboratory
Engineer Research & Development Center
Dredging and Disposal Plan for the Navigational Channel

- Hopper dredge, about 30 days of dredging and placement
- Various placement methods investigated in short-term risk study
- Contained aquatic disposal (CAD) in excavated pits within navigation channel by hopper bottom dump
Project Location

• Situated in the inner Santos estuary of Brazil, an area of high sedimentation and precipitation

• Navigation channel of Piaçaguera Canal serving the private Cubatão Harbor in the State of Sao Paulo, Brazil
 ▪ 5.4 km long (2.4 km to be dredged)
 ▪ 100 m wide
 ▪ 13 m deep
Acknowledgements

• Work performed by The US Army Engineer Research and Development Center (ERDC), under a Cooperative Research and Development Agreement (CRADA) with Fundação de Estudos e Pesquisas Aquáticas (FUNDESPA), a contractor for Companhia Siderurgica Paulista (COSIPA)

• Co-authors
 ▪ Paul R. Schroeder, Environmental Lab (EL)
 ▪ Stephen A. Pranger (EL)
 ▪ Guilherme Lotufo (EL)
ERDC Study Objectives

- Generate the best estimate of storage requirements for use in sizing the confined aquatic disposal (CAD) cells
- CAD pit must have sufficient volume for:
 - Retention for settling
 - Densification for storage
 - Adequate clearance from erosive forces to reduce losses from contaminated dredged material
 - Adequate clearance from erosive forces to ensure cap stability
- Reduce the uncertainty of the prediction by using two methods of testing and analysis
Approach

• Laboratory testing
• Design modeling for short-term sizing
• Evaluation of long-term performance and risk management
Laboratory Testing for Short-Term Sizing Evaluation
Settling for Short-Term Placement Volume

- Standard Column Settling Tests
 - Flocculent settling test for TSS in water column as a function of time
 - Zone settling test for area / flow rate constraint
 - Compression settling test for storage needs
Standard Settling Tests

US Army Corps of Engineers
Environmental Laboratory, Coastal & Hydraulics Laboratory
Engineer Research & Development Center
Standard Settling Results

Capping Material Data
y = 183.1x^{0.1623}

Dredged Material Data
y = 176.15x^{0.1697}

Time (days)
Solids Concentration (g/L)

US Army Corps of Engineers
Environmental Laboratory, Coastal & Hydraulics Laboratory
Engineer Research & Development Center
Settling for Post-Placement Volume

- Incrementally Filled Tall Column Settling Test
 - Simulate 38 days of filling
 - Simulate storage for a deep CAD pit
 - Examine entrainment effects
Water remains black (TSS up to about 10 g/L) for three hours per meter of settling height. Then, TSS of 30 to 150 mg/L.
Added 1 ft of 120 g/L slurry each day for 38 days.

US Army Corps of Engineers

Environmental Laboratory, Coastal & Hydraulics Laboratory
Engineer Research & Development Center
Storage Concentration

Tall Column Settling Results

\[y = 183.73x^{0.1602} \]

\[R^2 = 0.9897 \]
Settling Results and Conclusions

• Sediment is primarily fine-grained high plastic and highly compressible silt/clay with about 20% sand.

• Hindered settling occurs above 160 g/L. Zone settling velocities are quite slow and pose concerns for sizing and potential losses of solids during placement.

• Settling properties of dredged material and capping material are very similar.

• Suspended solids concentration under quiescent settling are below 40 mg/L initially, below 20 mg/L in 1 day, and below 10 mg/L in 7 days.

• Tall column settling test provided very good data for storage needs.
Laboratory Long-Term Performance Evaluation
Consolidation Test Results

\[e = 7.724 \, P^{-0.1932} \]

\[K = 0.00000122 \, e^{4.374} \]

In situ Material: Gray Sandy Clay (CH); 22% Sand;
\[w = 144.5\% \, (553 \, \text{g/L}) \]
Piaçaguera Canal CAD Pits

- Multiple cells excavated from bottom of existing navigation channel
- 4H : 1V side slopes
- 100 m top width
- Maximum depth of 25 m
- Maximum fill height of 10 m
- Cap thickness of up to 2 m
- Want about 3 m clearance to sediment interface

US Army Corps of Engineers
Environmental Laboratory, Coastal & Hydraulics Laboratory
Engineer Research & Development Center
CAD cells will be placed in the lower dredging reach where the sediments are suitable for ocean disposal.
Modeling
Implications for Sizing

- **Settling** (Short-Term Placement Volume)
 - Modeling Using USACE SETTLE Model
 - Prediction of Settled Solids Concentration and Bulking
 - Prediction of Total Suspended Solids (TSS) Concentration at Disposal Site (20 to 30 mg/L after 12 to 24 hours of settling)
 - Predicts Slow Zone Settling Rate (about 0.5 m/day at 120 g/L). Typical Rates are 1 to 2 m/day.
 - Prediction of Minimum Cell Area (about 21 ha/m3/s)
 - e.g., at Dredge Pump Rate of 0.5 m3/s, minimum cell area is about 10 ha (0.1 sq km)
Sizing

- Minimum cell area is about 200,000 sq m, given a width of 100 m, the minimum length of the CAD cell(s) is about 2 km.
- If multiple cells are used, filling must cycle between cells.
- Alternatives are to reduce the production rate by disposing only intermittently, to select a smaller dredge or to decrease slurry concentration.
Required Storage Capacity

US Army Corps of Engineers
Environmental Laboratory, Coastal & Hydraulics Laboratory
Engineer Research & Development Center
Filling Curve

Disposal Duration (days)

Fill Height (m)
Implications for Sizing

- **Consolidation (Long-Term Placement Volume)**
 - Modeling Using USACE PSDDF Model
 - Short-term sizing needs controlled by permeability
 - Permeability measurements in consolidation testing lacks precision and accuracy needed for predicting short-term sizing needs
 - Permeability data can be calibrated using tall column settling test results for mid- and long-term predictions
 - Relatively small adjustments required for calibration
 - Long-term volume will be about half of volume immediately after placement

US Army Corps of Engineers

Environmental Laboratory, Coastal & Hydraulics Laboratory
Engineer Research & Development Center
Preliminary CAD Cell Design

Conclusions

• Preliminary CAD cell design just meets area requirements

• Storage capacity provides 2 to 2.5 m of clearance for ship props, settling, and capping, about 0.5 m to 1 m less than expected

• Stretching disposal period would improve capacity
Testing Conclusions

- Tall column compression settling test provide the best basis for sizing deep CAD cells.
- Tall column predicts greater compression settling as expected due to 5 times greater material thickness.
- Permeability data in the consolidation modeling needed to be decreased by 50 percent to match tall column results.
- Consolidation test data is imprecise for permeability due to rapid changes in short sample.
Long-Term Risk

• Long term performance improved by consolidation, thereby increasing clearance for cap and providing for natural infilling of acceptable material

• Based on short-term risk evaluation, in the long-term,
 ▪ Cap is reworked and mixed, but not lost
 ▪ Mixing does not occur to a depth that compromises isolation of contaminated sediment

• Short-term risk can be improved by controls
Controls

- Mechanical dredging and disposal would increase density of disposed material
 - Increased density would reduce TSS losses to water column due to less entrainment of water and greater settling rates
 - Increased density would reduce erosional losses
 - Increased density would reduce storage needs and CAD pit size
Controls

- Disposed at the bottom of the CAD cell
- Limit the height of dredged material fill
 - Slow rate of disposal; extend period of disposal
 - Increase size of CAD cell
 - Limit quantity of dredged material