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OPTIMIZATION OF MECHANICAL DREDGING OPERATIONS FOR
NAVIGATIONAL PURPOSES

Carola A. Blazquez !, Teresa M. Adams 2, and Philip Keillor

ABSTRACT

The investment and fixed costs of dredging are significantly higher than the same type of costs
for many other construction operations. Productivity improvement and equipment usage need to
be addressed in order to reduce these costs. Software called REMSIM (REMediation
SIMulation) can be used to help reduce these costs. REMSIM that was developed at the
University of Wisconsin to simulate sediment remediation processes includes the capability to
select the equipment for a mechanical dredging operation, in order to increase productivity and
minimize cost. This paper presents unit dredging costs and production rate comparisons between
actual dredging projects from the Great Lakes and the results of REMSIM. The simulated
production rate provides good approximations to the actual project rate and unit costs. Various
parameters are examined for selecting combinations of resources that optimize productivity and
minimize costs. Parameters include loading/unloading bucket capacities and rates, number and
capacities of scows, transportation distance between the dredge and the disposal site, and shift
times of the dredge. An optimization method is presented for determining the minimum scow
size for maximum productivity. The purpose of this paper is to help Dredging Contractors to
estimate dredging costs and performance and select equipment that minimizes costs.

INTRODUCTION

There have been some suggestions for bringing economy to dredging decisions. In general, cost
reductions can be achieved by increasing the productivity of a dredging operation (PIANC,
1989). Mayer and Stark (1984) suggested that the operations research method of linear
programming be applied to dredging management decisions because dredging deals with the
common problem of allocating limited resources among competing activities. Contractors try to
keep the dredge working efficiently with a minimum of downtime. To do this, scows (barges)
and tugs are added, larger scows substituted for smaller scows, or dredging and unloading bucket
capacities are changed.

This paper describes an approach for improving productivity and equipment use in mechanical
dredging for navigation projects, with the help of a new software program called REMSIM
(REMediation SIMulation). This dredging module was inspired by the earlier dredging model
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development by Hayes (1983) for the Norfolk District of the U.S. Army Corps of Engineers.
REMSIM was developed at the University of Wisconsin-Madison with assistance of researchers
at the University of Minnesota-Duluth and University of Windsor (Ontario). REMSIM simulates
the sediment remediation processes from site characterization through disposal, including
dredging.

The REMSIM dredging module is based on information about navigation dredging that was
obtained from contractors, project records and the dredging literature. REMSIM can be used as
a tool to improve productivity, reduce the costs of dredging, and understand the effects of
changing the dredging plant or limiting the dredging process in particular projects. These effects
are shown in simulations as changes in project duration, unit project costs, and production rate of
the dredging system. REMSIM is suitable for making budget-level decisions about whether and
how to dredge.

The purpose of this paper is to show some of the insights into improving the productivity of
mechanical dredging gained by examining the mechanical dredging model used in REMSIM.
There are a number of parameters that influence dredging productivity and costs. The relative
importance of these parameters is shown by the sensitivity analysis in this paper. This paper also
provides some methods for optimizing productivity in a mechanical dredging system.

A MECHANICAL DREDGING SYSTEM

Figure 1 shows the sequence of actions followed in a typical mechanical dredging operation.
The REMSIM model for mechanical dredging calculates the dredging cycle time and the
production rate. The production rate is defined as the in situ volume of sediment removed per
hour. The production rate depends on the sum of the action times that make up the dredging
cycle.

Dredging Cycle

A dredging cycle includes the movement of sediment from the bottom of the water-body to a
storage site. For a multiple scow cycle, the cycle begins at the time the dredge starts to load the
first scow and ends at the time the dredge is ready to load the first scow again. The cycle time is
the summation of the following sequence of times for N number of scows.

- loading times of the N scows

- shift time(s) of the dredge to a new position while loading N scows

- waiting times of the dredge for N scows to return

REMSIM computes the times for each scow to proceed through the four phases of the dredging
cycle that are shown in Figure 1. This time accounting is used to compute any dredge wait time
so that the user can minimize that wait time.
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Figure 1: Dredging Cycle

Phase 1: Loading Time. The loading rate is calculated as shown in Equation 1, from Roorda
and Vertreght (1963).

Qm=1I*n; *z (L)

Where:

Qu : loading rate (cubic meters per hour)

I, : loading bucket capacity (cubic meters)

n; . loading bucket filling coefficient

z; : number of bucket loads filled per hour (loads per hour)

The time for loading scow 1, Tl;, is calculated with Equation 2.

I, = i )
Qe

Where:

Tl : loading time of scow i (hours)

Vi : volume of material in scow i (cubic meters)

Qmi : loading rate (cubic meters per hour)



Phase 2: Transport Time. Assumptions used in calculating a transport time include: a) a tug
positions an empty scow next to the dredging crane before moving a loaded scow, b) the
deceleration time of the loaded scow (with tug) is one half of the acceleration time, and c) the tug
and scow travel at constant speed to the disposal site once having reached a final velocity vr.
Equation 3 calculates the transport time of the loaded scow from the dredge to the unloading site:

T =5 3V (3)
t
Ve 2a
Where:

T, : transportation time of scows (hours)
S, : transportation distance (kilometers)
v : final constant velocity of the moving scow and the tug after acceleration (kilometers per

hour)
a : rate of acceleration, assumed constant (kilometers per hour squared)

Hayes (1983) used default values of 11.3 km/hr (7 miles/hour) for vi, 16.1 km/hr® (10 miles /hr?)
for a. REMSIM uses 8 km/hr (5 miles/hour) and 16 km/hr? respectively for acceleration a and 12
a for deceleration. Both acceleration and deceleration are included in the second term of
Equation 3.

Phase 3: Unloading Time. Equation 4 presents the rate of unloading a scow.

Qmu=12%*ny* 2z, 4)
Where:

Qmu : unloading rate (cubic meters per hour)

I, : unloading bucket capacity (cubic meters)

n; : unloading bucket emptying coefficient

zy : number of bucket loads emptied per hour

The unloading time for scow i, Tu, is shown in Equation 5.

Tu, =— (5)

Where:

Tu; : unloading time of scow i (hour)

Vi : volume of material in scow i (cubic meters)
Quu : unloading rate (cubic meters per hour)



Table 1 shows various values of I, n, and z for Equations 1 and 4, that have been suggested by
different authors and contractors. The choice of values depends on the type of sediment material
(mud, sand, stones, etc.).

Table 1: Suggested values for bucket sizes I, fill ratios n, & filling (emptying) per hour z.

Parameter Values Reference
I: Using conventional 0.14-1.02 m’ (0.19-1.33 yd*) Cooper (1958), Roorda and
clamshell bucket Vertregt (1963)
(1-12 yd3) is common up to 38 m’ | USACE (1983), PIANC
(50 yd*) (1989)
I: Using cable arm bucket | 3.25 -30.50 m" (4.06-39.9 yd°) Bergeron (2000)
n; 0.75 for mud Cooper (1958), Roorda and
Vertregt (1963)
0.9 ideal and 0.75 typical Dredging Contractors (1999)
ny 0.6 -0.7 Dredging Contractors (1999)
VA 40 loads per hour Hayes (1983)
20 to 30 loads per hour typical USACE (1983)
55 loads per hour ideal Dredging Contractors (1999)
48 loads per hour typical
80 loads per hour for mud Roorda and Vertregt (1963)
) 60 loads per hour ideal Dredging Contractors (1999)
48 loads per hour typical

Phase 4: Return Time of the Empty Scow to the Dredge. The return time is calculated using
Equation 3 and the same assumptions are used in calculating the times for Phase 2. The model
compares the time when a scow returns empty to the dredge with the time when the next scow
was filled. If the return time is later, then the time difference is the dredge wait time for the
empty scow, Tw;.

Total Cycle Time. The total cycle time TCT in hours is shown in Equation 6. Shift time, Ts;, is
an input to the model.

N
TCT =Y (Tw, +T1, +Ts,) fori=1,.,N (6)

i=1

The dredging cycle accounts for the activities necessary to dredge and load, transport, and unload
N scows, shift the dredge to a new site, and return the first scow to the dredge. The productivity
of this dredging cycle depends upon the combined productivity of each activity in the cycle.
Therefore, using the total cycle time TCT obtained above and the volume of the scows V, the
production rate Q for N scows is calculated by using Equation 7.

o - fori=1,..,N )



The loading/unloading rate ratio R is calculated using Equation 8. This ratio depends on the
equipment selected and the operational conditions used. A value of 2 was computed for R to
represent navigational dredging. This means that the scows are loaded at double the rate of
unloading. A range of R values between 0.4 and 2.4 is considered in some sections of this paper.

Qui
R = Sm 8
Q. (8)

COST ANALYSIS

The dredging system production rate influences the total dredging cost as shown in Equation 9
(adapted from Henshaw et al, 1999). A cost equation was developed by Henshaw and his co-
authors using a regression analysis of cost and productivity data from 30 dredging projects. The
data was from 11 Public Works Canada projects costing less than $400,000 each and from 19
U.s. Army Corps of Engineers projects costing more than $400,000 each. The mobilization term
has r* = 0.58, and the volume- dependent term has r* = 0.72. The range of values in the Henshaw
cost equation were retained and represent the 95 percent confidence interval of cost values
developed by Henshaw et al. Small modifications to the Henshaw equation were made and are
explained later in this section.

Total dredging cost TDC is inversely proportional to the production rate Q. Figure 2 shows the
total dredging cost for various production rates using Equation 9. For low production rates the
cost is very high. As the production rate increases, the total dredging cost decreases rapidly.
The minimum, mid-range, and maximum values of MDC, MDF, and VDF are used respectively
to compute the minimum, mid-range, and maximum value of TDC. Comparisons between
REMSIM values for TDC and actual project values for TDC are shown in Figure 3.

TDC =MDC + MDF (logX, ) + VDF(EJ {#—] 9)
Q | EWT

Where:

TDC : total dredging cost ($US, 1994)

MDC : mechanical dredging fixed cost ($184,000 + $124,000)

MDF : mobilization/demobilization factor ($19,000 + $8,100)/log km

VDF : volume dependent factor ($420 + $130 /hour)

V4 : volume of sediment dredged (m’)

Q : production rate (m3/hour)

X : mobilization distance (kilometers). Must be greater than 40 kilometers.

EWT : effective working time factor



$15,000,000 - \
$14,000,000 ¢
$13,000,000 - ‘
\
|
\

Mobilization Distance = 40 (km)

Effective work factor = 0.5

Total volume dredged = 80,000 (m’)

$12,000,000
$11,000,000
$10,000,000
$9,000,000 +
$8,000,000 |\
$7,000,000 |—&
$6,000,000 \
$5,000,000 - \
$4,000,000 L3
$3,000,000
$2,000,000 \"\M
$1,000,000 >

$0 T T T T T T T T ! T T f T 1
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Total Dredging Cost ($)

L 2
b

Production Rate (m3/hr)

Figure 2: Mid-range total dredging cost for various production rates.

The fixed cost MDC of mechanical dredging is variable in actual dredging projects. This is
reflected in the range of values given by Henshaw et al (1999). Dredging Contractors (1999)
suggested that a higher MDC be used for rock dredging, a lower MDC be used for dredging silt
and loose sand, and that the minimum MDC is $50,000 to $60,000. The minimum and mid-
range values for MDC in Equation 9 are offset from those suggested by Henshaw et al to avoid
the possibility of a negative number and to match the contractors’ recommended minimum value.
The maximum values of MDC in Equation 9 and in the comparable equation in Henshaw et al
(1999) are the same: $308,000.

Mobilization/demobilization costs as shown by Henshaw et al (1999) are non-linear with respect
to mobilization distance. Equation 9 uses the logjo X term to represent the non-linear cost
increase logarithmic with mobilization distance. Consequently, increasing the mobilization
distance significantly increases cost.

The volume dependent factor derived by Henshaw et al (1999) is an equivalent combined hourly
rate for labor and equipment working on site. Dredging Contractors (1999) suggested that higher
VDF be used for rock dredging and lower VDF be used for dredging silt and loose sand.

The EWT factor is the decimal fraction of a 24 hour day in which labor and dredging equipment
are working at the production rate Q. The EWT is used for the entire dredging cycle, even
though unloading operations may have less downtime than the dredging (loading) operations.
Table 2 shows some suggested values and the value used in the sensitivity analysis.



In preparing bids, contractors sometimes over estimate their EWT by as much as a factor of two
(Dredging Contractors 1999). This over estimate results in contractors underestimating the unit
variable costs of dredging (VDF in Equation 9). EWT accounts for all downtime factors,
including weather delays. Mechanical dredges typically operate 17 to 18 hours per day. When
dredging is done in waters exposed to significant wave action, EWT is reduced.

Table 2: Effective working time EWT

Condition Value Reference
Spring and Fall, typical 0.6 Dredging Contractors
values (1999)
Summer, best conditions 0.8 same
Winter, worst conditions 0.1 same
Value used in analysis N e —

COMPARISONS WITH RESULTS FROM DREDGING PROJECTS

Dredging Contractors (1999) provided data from 12 navigational dredging projects in harbors of
the Great Lakes. The projects were completed in the period 1986-1999 and the data were used
for production rate and unit cost comparisons. REMSIM was used to calculate production rates
and dredging costs, using the operational parameters that the contractors provided (bucket size,
number and capacities of scows used, distance that dredged material was hauled, unloading
method, and effective working time) or suggested (dredging and unloading rates and bucket fill
ratios).

Table 3: Comparison between actual production rates and simulated production rates.

Project Actual Prod. Rate (m3/h0ur) Simulated Prod. Rate (m3/ hour)
A 317 324
B 298 303
* 329 324
D 268 270
E 214 218
F 226 226
G a0 69
H 138 132
1 190 185
J 188 185
K 161 163
L, 233 227

Table 3 and Figure 3 show that REMSIM adequately models the production rate of mechanical
dredges operating in the Great LLakes. REMSIM can be used to compute actual production using
the operational parameters that dredging contractors suggest, even when the unloading mode is
quite different.



In most of these projects, unloading was performed in ways that are not modeled in REMSIM:
open-water disposal (4 projects), and hydraulic unloading (7 projects). For these projects, it was
assumed that the disposal activity would minimize dredge wait times. To model this in
REMSIM, the parameters for unloading bucket capacity and unloading rate were increased until
the dredge wait time was minimized. However, for a few projects, the dredge wait time could
not be eliminated with this approach. This indicates that the dredge cycle for these projects did
include wait times. The following projects had significant wait times when run in REMSIM
because of long haul distance, small scow capacity, or because only two scows were used:
Project D: wait time = 0.9 hours, haul distance = 48 kilometers, three scows each having 1530
m’ capacity.

Project F: wait time = 1.0 hours, haul distance = 22 kilometers, two scows each having 1530 m’
capacity.

Project H: wait time = 1.6 hours, haul distance = 0.8 kilometers, two scows each having 459 m’
capacity.

Closer matches of production rates than those shown in Table 3 could have been obtained with
more iterative runs of REMSIM. This matching of rates is possible because there are relatively
few unstated dredging variables and because there is a common contractor strategy to minimize
dredge wait times.
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Figure 3: Comparison between different navigational dredging projects using REMSIM software
and actual unit costs.

Figure 3 compares unit dredging costs from the same 12 projects to the estimated unit dredging
costs computed with REMSIM. High, low, and mid-range costs are calculated in REMSIM,
using Equation 9. Only the high and low unit dredging costs were used in Figure 3. The
mobilization costs were subtracted from the REMSIM results for all projects because the



contractors did not provide them. The iterative running of the project conditions in REMSIM
until production rates were nearly matched was intended to reduce or eliminate the variability
due to uncertainty about particular project dredging parameters. The near-match of production
rates and the exclusion of mobilization costs means that remaining difficulties in matching
REMSIM costs and actual costs must lie in the cost equation adapted from Henshaw et al (1999).

Figure 3 shows that actual unit dredging costs were outside of the REMSIM unit dredging cost
range for five of the 12 projects, but the difference was substantial on only two of the projects:
Projects F and H, where actual costs exceeded maximum estimated REMSIM costs by 70
percent and 64 percent, respectively. This comparison indicates that the REMSIM cost range is
a reasonable approximation to actual dredging costs on most projects. However, circumstances
affecting bid prices on some projects are not modeled in REMSIM. Two factors that are not
modeled in REMSIM are: a) the nature of competition for particular projects, and b) the schedule
of future work for contractors winning bids.

SENSITIVITY ANALYSIS

The effect of variations in the value of model parameters may be observed through a sensitivity
analysis. This analysis identifies which parameters have greater impact on production rate, and
establishes the tolerance of these parameters. The following sensitivity analysis explores some,
but not all, of the possible combinations of dredging equipment rate and capacity. Table 4 shows
the parameter values for navigational dredging system used in the sensitivity analysis.

Table 4: Selected Navigational Dredging Parameters.

Parameters Navigational
VA 60
Z2 60
n 0.75
n 0.75
I 6.1
I 3.1

Qmi 274.5
D 139.5
R 2
N 2
Vv 780
Ss 4
V¥§ 8
a 16
EWT 0.5
Ts 1
Vy 80,000

10



Loading and Unloading Bucket Capacities I; and I,
If both dredging and unloading bucket capacities are increased, the loading and unloading rates
increase causing an increase in the overall production rate. The same effect is true for increases
in fill ratios, and bucket filling and emptying rates. Figure 4 shows an increase in productivity as
the bucket sizes increase in unison, using a scale factor o with values between 1 and 3.25. There
is a slight marginal decrease, however, for this example. Tripling of bucket size nearly triples
production rate with the largest scows, but less than doubles the rate with the smallest scows.
Scow capacity becomes a more important limiting factor when the buckets are larger.

400 i 2 e — o —————— 1
as B //'
£ 350 e
g 325 =
= 300
5 275 /4—”"‘3
R 250 —
g 225
S 200 - /7/ Mv
s °
100 1 I I T T I T
, 1 1.28 1.5 178 2 225 2.5 275 3 825
Bucket Scale Factor (a)
—e— V = 380 (cubic meters) —e— V = 700 (cubic meters)
—a— V = 1020 (cubic meters) —#—V = 1340 (cubic meters)

Figure 4: Production rate for navigational dredging [R=2] for different bucket capacities using
two scows of equal size.

Numbers and Capacities of Scows N, V1, V; and V;

The range of scow capacity considered in this analysis is 380 to 1500 cubic meters. Typical
scow capacities in the Great Lakes range from 50 to 1520 cubic meters (66 to 2,000 cubic yards)
according to Dredging Contractors (1999). Ocean scows may have capacities of 5,000 to 7,000
cubic meters (6,600 to 9,240 cubic yards).

Figure 5 presents optimal scow size combinations that yield maximum productivity in a two-
scow dredging system for loading/unloading rate ratios R greater than or equal to 1.4. Any scow
size combination above the curve will yield maximum productivity, which is bounded by the
unloading rate. For example, if the volumes for the two scows are Vi = 860 m°® and V, =688 m3,

then the ratio between the scow size —= is 0.8. Using the curve, a ratio of 1.75 is obtained.

1

11



Thus, the scow volume of equal capacity for maximum productivity in a two-scow system must
be greater than or equal to 492 m’.
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Figure 5: Optimal scow size combination for various rates of operation [R>1.4] using two scows.
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Figure 6: Optimal scow ratio for various rates of operation [R>1.4] using three scows.
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It is common for three scows to be used: one being loaded at the dredge, one in transit with a tug
and one being unloaded (Dredging Contractors, 1999). In a multiple scow system with unequal
scow sizes, the order in which the scows are filled is not important. The scows operate in a
continuous cycle, producing the same results. The model assumes that a tug is put to work with
every two scows. A 1,000 horsepower tug in 1999 costs roughly one dollar per horsepower per
day.

Figure 6 can be used to select combinations of scow capacities, which will produce maximum
productivity in a three-scow dredging system. The feasible region is above the curve. In Figure
6, V is the minimum capacity of a system with three equal-capacity scows and V,, V,, and V3 are
the individual capacities of three scows.

V
If —\—[l— =1.6 then, from Figure 6, the capacities of V, and V3 must be greater than or equal to

0.6*V; in order to maximize productivity. For example, let V = 780 cubic meters, then V; =
1.6%780 = 1248 cubic meters, and V, and V3 must be greater than or equal to 0.6%1248 = 749
cubic meters.

Loading/Unloading Rate Ratio R

The easiest way to understand the effect of the parameter R is by considering a two-scow system.
In a two-scow system, greater productivity is always obtained when the scows have equal
capacity. Therefore, the effect of R is examined in the sensitivity analysis where the two scows
have the same capacity V.

Figure 7 shows the trade off between scaling the minimum scow volume for maximum
productivity, by using the scow size scale factor 3, and the loading/unloading rate ratio R. The
minimum scow volume is normalized with a scow capacity equal to 780 m’ for R equal to 2. As
shown in this figure, if the loading of the scows increases (R increases), a smaller scow volume
is needed to maximize productivity. If the dredge operates very slowly relative to the unloading
at the disposal site then extremely large scows are required to reach the maximum productivity.
For example, if the loading/unloading rate ratio R is decreased from 2 to a value of 1.3, then the
minimum volume of the scows has to double in order to maintain maximum productivity.

Transportation Distance S

Figure 8 shows the trade off between the minimum scow size and travel distance for R equal to
2. The travel distance is normalized with a transportation distance of 4 km, and the minimum
scow volume is standardized with the scow base volume of 780 m’ for a two-scow dredging
system of equal size. The figure shows that as the transportation distance increases, the
minimum scow size to maximize productivity also increases. For example, if the travel distance
is increased by 1 km, then the minimum scow volume should increase by 20% in order to
maximize productivity. Different combinations of travel distance scale @, and scow size scale f3
located above the curve yields the maximum productivity.

13
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Shift Time T's

Dredging contractors (1999) reported that dredge shift times on an area to be dredged were
typically 5 to 10 minutes (0.08 to 0.16 hours) as the bucket is used to move the dredge. When
moving to another area to be dredged, shift times are longer because a tug is required to move
the dredge. The sensitivity analysis was done with a shift time of one hour. When shift times
are shorter, there are significant increases in the production rate and small reductions in mid-
range total dredging cost (Table 5). The baseline conditions for the sensitivity analysis are
modified by increasing the unloading bucket capacity from 3.1 to 6 cubic meters in order to
make the dredge wait time zero.

Table 5: Effect of shift time on dredging productivity and cost under modified baseline

conditions.
Shift time (min.) | Prod.rate (m3/hr) Percent change mid-range TDC Percent change
60 203 Mod. Baseline $540,000 Mod. Baseline
30 233 +15 $499,000 -7
15 252 +24 $479,000 -11
10 259 +28 $472,000 -13
5 267 +31 $465,000 -14

MECHANICAL DREDGING PRODUCTIVITY OPTIMIZATION

Method for Selecting Minimum Scow Size

In planning a dredging project, one decision is to select a scow size that optimizes productivity.
Based upon the results of the sensitivity analysis, maximum productivity is bounded by the
unloading rate. This bound, which corresponds to the maximum productivity, is quickly reached
after a few dredging cycles. Under this situation, the total dredging cycle time TCT is equal to
the unloading time of the scows. Subsequently, Equation 10 is derived from this concept to
determine the minimum scow volume for maximum productivity Vmin in a two-scow dredging
system, for R values between 1.4 and 2.4.

Vmin =(Ts + Tw) *Q__ *Eg—"I (10)

The summation of the waiting time of the dredge Tw and the shift time of the dredge to
reposition Ts from Equation 10 is constant for a given velocity (8 km/hr), acceleration (16
km/hr?), deceleration (8 km/hr?) of the scows, and distance between the dredge and the storage
site. This constant has been named the Shift-Wait Time constant (SW = Ts + Tw) for R greater
than or equal to 1.4. Maintaining the conditions used in Equation 10, there is also a linear
relationship between the constant SW and the distance Sy between the dredge and the storage
site. Thus, the minimum scow volume for maximum productivity Vmin can be calculated as in
Equation 11. This equation indicates that if the travel distance decreases and the
loading/unloading rate ratio R increases, the smaller is the minimum scow size needed for
maximum productivity.
R

Vmin = (0.15929*S, +1.89504)*Q,,, *=—

(11)
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CONCLUSIONS

The REMSIM mechanical dredging module is useful as a tool in improving productivity, for
estimating and reducing the costs of dredging for navigation. REMSIM is useful in
understanding the effects on productivity, project duration, and dredging cost that result from
changing the dredging plant or from limitations imposed on the dredging process in particular
projects.

REMSIM adequately models the production rate of mechanical dredges operating in the Great
Lakes. This modeling of production rates is possible because there are relatively few unstated
dredging variables and because there is a common contractor strategy to minimize dredge wait
times. REMSIM can be used to predict actual production rates even when the unloading mode is
quite different from the crane and bucket mode used in REMSIM.

REMSIM models a dredging cost range which is a reasonable approximation to actual dredging
costs on most projects. However, circumstances affecting bid prices and dredging costs on some
projects are not modeled in REMSIM. REMSIM should not be used alone for bid preparation.

This paper has shown different approaches to improve productivity and equipment use, and to
reduce costs in a mechanical dredging system for navigational purposes. The sensitivity analysis
presented the impact of important parameters in dredging productivity. The following
conclusions were derived from this analysis.

If the dredging and unloading bucket capacities, the fill ratios, or the fillings rates are increased,
larger scow loading and unloading rates can cause a large increase in the overall production rate.
The scow capacity becomes an important limiting factor when the bucket sizes are larger.
Productivity also increases as the size difference between scows decreases.

A two or three-scow system yields higher productivity than a single scow system. The highest
productivity is obtained when the scows working in a mechanical dredging system are equal or
nearly equal in size. If the two scows have equal capacity, maintaining all other parameters
constant mentioned in this paper, the maximum production rate can be reached at a scow
capacity of 780 cubic meters each.

Figure 5 and 6 can be used to select combinations of scow capacities which will produce
maximum productivity in a two-scow and three-scow dredging system, respectively. These
scows may have equal or different individual sizes. This idea was explained through simple
examples in this paper.

From the productivity optimization analysis, Equations 10 and 11 were derived to select
minimum scow sizes necessary for maximum productivity. These equations help to determine

the optimum combination of scows so to achieve higher dredging performance.

The maximum productivity achieved in a dredging system is bounded by the unloading rate at
the storage site. If the unloading rate increases, then the maximum production rate increases and
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the minimum scow size needed to maintain the maximum production rate increases. This is true
when the loading/unloading rate ratio R is greater than 1.4. If R is less than 1.4, then maximum
productivity is not reached within the typical scow sizes used in this paper. Figure 7 shows that
the minimum scow size for maximum productivity diminishes as R increases. The
loading/unloading rate ratio R influences productivity considerably.

The travel distance between the dredge and the storage site also impacts productivity. Figure 8
shows that the minimum scow size for maximum productivity increases as the transportation
distance increases. At greater distances, and with smaller scow capacities, a third scow should
be added to maintain production rates.

The production rate comparison between actual project data and results calculated using
REMSIM was encouraging. The values nearly matched which indicates that REMSIM is a
useful tool for estimating dredging performance.

The cost analysis presented the total dredging cost formula and various factors values suggested
by Dredging Contractors (1999) and Henshaw et al (1999). In general, discrepancies exist
between actual and REMSIM costs which indicates the need to revise the dredging cost equation.

NOMENCLATURE
a = rate of acceleration km/hr’
EWT = effective working time factor
I; = loading bucket capacity m’
I = unloading bucket capacity m’
MDC = mechanical dredging fixed cost $
MDF = mobilization/demobilization factor $/log km
N = number of scows
n = loading bucket filling coefficient
ns = unloading bucket emptying coefficient
Q = production rate m’/hr
Qu = loading production rate of scows m’/hr
Dea = unloading production rate of scows m>/hr
r = correlation coefficient
R = loading/unloading rate ratio
s = transportation distance km
SW = shift-wait time constant hr
T = loading time of scow 1 hr
Ts = Shift time for dredge to reposition in one cycle hr
Ts; s Shift time for dredge to reposition after loading scow i hr
T. = transportation time of scows hr
Ty = unloading time of scow i hr
Tw = total waiting time of the dredge in one cycle hr
Tw; = waiting time of the dredge for scow i hr
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total cycle time

total dredging cost

capacity of scows of equal size

volume of sediment to be dredged

final constant velocity of scows

volume of material in scow i

volume of material in scow 1

volume of material in scow 2

volume of material in scow 3

minimum scow volume for maximum productivity
volume dependent factor

mobilization distance

number of bucket loads filled per hour
number of bucket loads emptied per hour
bucket size scale factor

scow capacity scale factor

travel distance scale factor

positive integer index
index related to filling scows
index related to emptying scows
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A ‘DREDGING INFORMATION SYSTEM’ FOR THE RIVER SCHELDT

ir. J. Claessens ', ir. Ph. Van de Velde ?, ir. J. Smits ?

ABSTRACT

Maintenance dredging works are carried out on the river Scheldt throughout the whole year in
order to maintain the accessibility of the Port of Antwerp (Belgium). To optimise and
supervise the maintenance dredging it was decided - in the early nineties - to develop a
computer based system for the automated follow up of the dredging activities. The
development of the system was done in phases. The final phases are being implemented now
and the system proves to be a useful instrument for the follow-up, supervision and evaluation
of the dredging works. This paper deals with the design and implementation of this ‘Dredging
Information System’ and evaluates the overall performance of the system. The paper shows
that - on the condition that appropriate tools for managing and presenting the information are
provided for - a computer based information system can be successfully used to manage the
huge amount of data involved in the follow-up and supervision of maintenance dredging
works.

INTRODUCTION

In the beginning of the nineties the Maritime Scheldt Division of the Ministry of the Flemish
Community decided to start developing a system that should allow automated supervision of
the dredging works on the river Scheldt. The project was carried out in several phases. The
first phases mainly focused on the verification and supervision of the dredging depth and
position, because of the strict regulations concerning these two aspect. These phases were
discussed in detail in a previous paper (Claessens et al., 1997). A short description of these
phases is included here.

The main task of the system is to provide an efficient tool for supervision and verification of
the dredging works. All information should thus be presented in a way that allows easy
mnterpretation of the data, from a supervisor’s point of view. Means have to be provided to
detect any non-conforming situations quickly. Another task of the system is to provide the
means for short time evaluation - and thus planning - of the dredging works. An important
aspect is the feed-back of information to the crew. To achieve efficient and correct dredging it
is not only necessary to supervise the operation. The crew must also have feedback. This is
done by integrating an extended navigation system in the software on board. This system not
only shows the position of the ship in relation to the dredging area but also provides access to
most data available in the registration system and shows information about the actual state of
the dredging area.

A recent addition covers the registration and reporting of a dredge’s operation : time-usage
and production are recorded on board. A fully automated reporting system imports the
recorded data in a database and generates trip reports and week reports. The automatic

! Ministry of the Flemish Community - Maritime Scheldt Division, Tavernierkaai 3, 2000 Antwerp, Belgium
? International Marine and Dredging Consultants (IMDC) NV, Wilrijkstraat 37-45 B4, 2140 Antwerp, Belgium
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reporting system is discussed in more detail in this paper. The current phase of the project
concerns the making of a geographical inventory of the dredged and relocated material. For
every relevant location on the river Scheldt, the amount of dredged and relocated material is
kept in a database. Linking this information to depth soundings and the results of
mathematical models, this inventory will lead to a better understanding of the morphological
processes in the river.

DESIGN OF THE SYSTEM

Measured Signals

The dredging depth is computed from the depth of the draghead under the waterline and the
value of the tide at the dredging location. The depth under the waterline is measured as an
analogue signal. The tide is measured by a chain of tide gauges along the river. Tide values
are transmitted by radio to a receiver on board of each dredger. The position of the dredges is
measured by means of a DGPS (Differential Global Positioning System). The differential
corrections are provided by two private short-range base stations. The whole area involved is
covered with an accuracy better than 2 meters.

Other signals are measured for determining the status of the dredger (dredging, dumping
sailing). These signals include mixture concentration; indication whether the ship’s hopper is
open or not; position of the swell compensator (indicating whether the draghead is touching
the bottom or not); dredge pump(s) operation and open/closed indication for some valves on
the pressure side of the dredging pumps. Finally, some signals are measured for the purpose
of production calculation such as pressure transducers in the keel of the ship, measuring
draught and ultrasonic distance transducers above the hopper, measuring the load level in
hopper.

Tide receiver

DGPS

Mixture concentration Valve Positions Antenna

/ Ship open
Pump /
Running ¢
Draught For Draught Aft

Dredging Depth

Figure 1: Measured signals overview
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Information Flow

The main information handled by the system are as follows:

o The ‘Dredging program’ (from shore to ship) - The planned activities for the next
period (typically one week) are summarised in a so-called ‘dredging program’. The
‘dredging program’ indicates the assigned dredging and disposal areas for each dredger
and contains additional information about the imposed dredging depth and instructions
on when to dredge what area.

o Information needed for the evaluation and supervision of the dredging works (from ship
to shore). This information consists of: (a) periodic registrations of the ship’s position
and dredging depth. This information allows to detect dredging or disposal outside the
designated areas and to detect under-dredging or over-dredging; (b) information needed
for in-between evaluation of the dredging areas; (c¢) time-usage information; and (d)
production data.

| Digitize contours of
dredging and

relocation areas (PC) Set up map of dredging

and relocation areas

Input area and dredge

Visual inspection allocation

(PC) ] (PC) ‘
I

Contractors Office

Dredging program On board
[ e o :
! On-line registration I
| on board 1 Navigation display
‘ (Industrial Computer)
|

Track plotter
Control and evaluation Authorities Office

data

e .

1
Control and supervision 1
Software
(PC)
1
¥ —
L |
Dredge area evaluation
Software i
(PC) |
4 J
L‘m_J Database and Reporting
Software
ey (PC)

Figure 2: Information flow and procedures
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The different stages of the information flow are the following (see
Figure 2):

1. Based on soundings and the state of the dredging area, the dredging program for the
next week is set up. Dredging and disposal areas are selected. A map of these areas is
fed into the system. Dredging and disposal areas are assigned to dredges in the
‘dredging program’.

2. After a visual inspection, the ‘dredging program’ is copied to floppy disks and
distributed over the dredges.

3. The ‘dredging program’ is read by the computer on board of each dredger. All relevant
data are shown on a navigation display.

4. While the dredger is operating all measured signals are recorded on hard disk by the
computer on-board. The registered data are also shown on the navigation display to
give feedback to the crew.

5. The registered data are copied to floppy disk for transfer to a PC. This is done at least
twice a week. The floppies are transferred to the authorities for further analysis. On the
PC a number of software programs are provided that allow to analyse the data. A PC on
board is provided to allow the supervisors to make in-between evaluations.

6.  The results of the analysis, together with information provided by soundings, are used
to set up the dredging program for the next week, which brings us back to step 1.

PREPARATION OF THE DREDGING WORKS

Preparation of the dredging works is done making up the ‘Dredging Program’. The ‘dredging
program’ consists of the following: (a) the geographical contours of the dredging and disposal
areas, with indication of areas that need special attention; (b) the assignment of dredging and
disposal areas to a dredger and (c) miscellaneous information such as dredging depth.

Input of geographical data is done by digitising. The co-ordinates are transferred to a software
program that allows to create a digital map from the digitised co-ordinates. All information
needed to draw a digital map is stored into a database. Two kinds of information are stored in
the database: (a) fixed geographical information - These geographical data are not likely to
change very often. Among these data we have banks, position of buoys, landmarks and other
navigation aids, and (b) variable geographical information - This geographical information
may change frequently. One example is the information about dredging and disposal areas for
one week.

Once geographical data are entered, the database and the ‘dredging program’ can be checked.
After selection of a ship, software shows the dredge area in overlay with the fixed
geographical data. Additional data such as imposed dredging depth are also shown. This
allows to have a visual verification of the data before transferring them to the ship. An
example screen is given in figure 3. Once approved, the program is distributed to all dredges
involved in the work.
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Figure 3: Visual verification of input data on PC

OPERATION OF THE SYSTEM ON BOARD

The system on board performs two task: (a) the system registers all dredging activities for
supervision and evaluation purposes; and (b) the system provides the crew with feedback, so
that dredging is done in the most efficient way.

Registration of the Dredging Activities

All signals are measured and recorded. The next sections explain how these recordings can be
used for supervision and evaluation of the dredging activities.

Feedback to the Crew

The crew must have all information to be able to work efficiently within the limits imposed.
For this reason special attention was paid to provide the crew with this information. Most on-
line information is shown on the navigation screen near the skipper. The same display is
shown on a smaller screen near the dredgemaster. An example of this navigation display is
given in Figure 4.
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Figure 4: Navigation display for skipper and dredgemaster

The right part of the display shows - on a digital map - the position and heading of the ship
relative to the environment. A colour coded depth map for the dredging area is also shown.
This map is the result of recording the last dredging depth in a square grid. The depth map is
updated on-line. Colours indicate whether the imposed dredging depth has been reached or
not. A depth map generated by recording dredging depths has not the same quality and
precision as a depth map generated by conventional echo soundings. Nevertheless this
approach proved to be a valuable means for immediate on-line feedback of dredging
operations and for in-between evaluations. The main purpose is to decide on what part of the
dredging zone the dredging should be focused.

The left of the screen shows - in alphanumeric form - the most relevant measured signals,
together with a status indication. In the bottom area of the display, messages are shown to the
skipper and dredgemaster, indicating warnings or possible malfunctions of a subsystem.

SUPERVISION AND VERIFICATION

All supervision and verification tools are gathered in a single software program. The primary
means of supervision is a graphic display presenting the tracks as sailed by the ship. These
tracks are colour-coded where the colour depends on the state of the dredger (dredging,
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sailing, dumping) and the dredging depth (in case the vessel is dredging). These tracks are
shown in overlay with the assigned dredging and disposal areas.

This graphical presentation is a simple but powerful means for supervision : at one glance the
supervisor can check the main constraints - Was dredging and disposal done within the
assigned areas? Was the imposed dredging depth met?
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Figure 5 : Recorded signals and status information

The supervision software also allows the generation of several reports. Among these we have
depth statistics, overview of available data, start time and end time of trips, positioning
system quality statistics, tide measurement system quality statistics, etc. In case of anomalies
in the interpretation of data, some graphical screens are available, showing the recorded
signals and status information. An example is shown in Figure 5.

EVALUATION

Evaluation of the dredging area is done on a chart similar to the depth chart on the navigation
screen (Figure 4). The chart shows the colour coded dredging depths. As mentioned before,
this colour coded map of dredging depths is not intended to replace conventional echo-
soundings. [t must be considered as a quick way to evaluate the state of the dredging zone in-
between echo-soundings. From the result of these evaluations the on-going dredging can be
adjusted.
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AUTOMATED REPORTING

Generating reports that describe the operation of a dredger is common practice. These reports
typically include information about time-usage and actual production. For hopper dredges,
time usage data consist of start and duration of the distinct phases of the dredging cycle (trip).
Production data consist of information about the dredged quantities for every trip.

In most cases reporting involves the following three steps: (a) Collection of data : This is
frequently done manually by the crew or by a supervisor on board; (b) Recording of data : if
the information is collected manually, the data for a trip are entered into a logbook. This can
be done by writing down the data or by entering the data in an electronic form (e.g.
spreadsheet); and (c¢) Generation of reports : based on the trip data, a number of reports can be
made. Trip reports show all details about one trip, day reports or shift reports summarise the
data in less detail. Weekly reports or progress reports give a general overview of the
operation of the dredger for the period concerned. Generation of these reports can be done
manually or in a more or less automated way.

The reporting system that was implemented as a part of the dredging information system is
fully automatic : the gathering of the needed data is done by the on-board registration system.
The data are imported in a database. From this database, users can generate trip reports,
weekly reports and periodic reports. The key issue in reporting systems is the collection of
data. If the collected data are correct, the process of storing the data in a database and the
generation of the reports is quite straightforward.

Time Usage

The basic cycle in the operation of hopper dredges is the ‘trip’. The ‘dredge cycle phases’
considered in the reporting system are: dredging; turning; sailing to disposal area; disposal of
the material by dumping; disposal of the material by pumping ashore; sailing back to
dredging area; and downtime periods.

An automatic reporting system must be able to recognise these distinct phases. The
recognition must be robust and consistent. Robustness means that the recognition mechanism
should be relatively insensitive to sensor failures. Consistency means that all possible
situations should be handled. The basic idea behind the implemented dredge cycle phase
recognition is that only digital (on/off) signals are used. Analogue sensors need calibration
and are generally more error-prone than digital sensors. Digital sensors are relatively simple,
cost less and can be interfaced in a simple way. Malfunctions are easily detected and sensors
can be replaced by the crew.

The signals actually used for the phase recognition are: (a) hopper open/closed; (b) suction
pipe(s) overboard; (c) dredge pump(s) operation; and (d) position of some valves on the
pressure side of the dredging pumps. Experience shows that due to the presence of dirt or
other material, a valve position sensor may not be working properly. By using the ‘valve
closed” sensor as well as the “valve open’ sensor for each valve and taking into account the
position of all valves, it is however possible to design a recognition mechanism that not only
works correctly but even is capable of detecting and correcting single sensor failures. Once
dredge cycle phase recognition is correct, it is straightforward to obtain start time and
duration for the distinct phases of the dredge cycle.
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Production Data

A reporting system normally includes production data : the amount of material dredged or
relocated on a trip is measured and included in the report. In case of the maintenance
dredging works on the river Scheldt, the production for a trip is defined as the amount of
material carried to the disposal area during the trip. In most cases the dredged material is sand
and - until now - the production is measured by manually sounding the actual volume of sand
in hopper.

For hopper production calculation the volume of dredged material in hopper and the weight
of this material are needed. These quantities can not be measured directly in an easy way. For
the evaluation two types of measurements were implemented :

° Measurement of the vessel’s draught by means of pressure sensors on the keel of the
ship (front and rear). Using the hydrostatic tables of the vessel, these draughts can be
converted to water displacement and thus total weight of the vessel. Draught sensors are
present on most dredges.

° Measurement of the level in hopper by means of two ultra-sonic sensors mounted above
the hopper (front and rear). By means of ‘hopper tables’ the levels can be converted to
the volume of the total amount of material in hopper.

Taking into account the weight of the empty vessel, the weight and volume of the hopper load
can be established. The hopper load however usually consists of a mixture of dredged
material and water. One common way to get an actual amount of dredged material is the
“Tons Dry Solids’ method that allows to calculate volume and weight of the load, assuming a
stated density value for the material. Known characteristics of this method are the following:

¢ The weight of the empty ship must be known in order to obtain the total load weight
from the total vessel’s weight. In case the filling of trim tanks can influence the weight
of the vessel, the volumes in these trimtanks should also be measured. To compensate
for slow changes in the vessel’s weight - e.g. due to fuel consumption - a measurement
of the weight of the empty vessel should be done at regular intervals. Measurements of
the weight of the empty vessel influence all following load measurements.

] The density of water has an influence on the draught measurement. In the Scheldt
estuary the density of water depends on the dredging location. In some locations it
depends on the actual value of the tide. Fortunately when calculating the vessel’s
weight from transducer pressures, the influence of water density is very small.

In a first measurement campaign, an evaluation of the basic measurements (vessels weight
and total hopper volume) was done : manual recordings of the vessel’s weight and hopper
volume were done on regular intervals during several weeks. These recordings were
compared with the measurements done by the automatic reporting system. Production
measurements were made on a moment short before dumping. In the mean time, manual and
automatic recordings compare well. The results of individual measurements however depend
largely on the circumstances. In our opinion, the indication of the quality of a measurement is
nearly as important as the measurement value itself, especially in the case of unattended
automatic logging. In case of automated production measurement it appeared that the
establishment of reliable quality indicators is not evident : most influencing factors are fairly
difficult to measure and quantify. It appeared that the relatively simple quality indicators we
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used (ship’s speed relative to ground, turning rate, rate of change for 'sensor values, etc.) do
not have a direct relationship with differences between manual and automatic measurements.
These issues are still under investigation.

Implementation of the Reporting System

Dredge cycle recognition 1s done by the registration system on board. The results are shown
on the navigation display near the skipper. Detected sensor failures are also shown on this
screen. Hopper load and volume are measured by the registration system. The measurement is
not initiated by the registration system but is done on external command. As explained in the
previous paragraph hopper load and volume measurements are still under investigation. The
recorded data are copied on a floppy disk and transferred a PC. On PC the data are imported
in a database. During import consistency checks on the data are done. We selected a
‘personal’ database (MS Access ®) on PC and not a ‘company’ database on server or
workstation. The database can thus be used on a PC on-board. From the database, standard
reports are generated on screen and on printer, including periodic reports, trip reports and
weekly reports.

The fact that all data from the automatic reporting system are stored in a database allows
other applications - such as spreadsheets - to access the data by means of queries. The
presentation and analysis of the recorded data is thus not restricted to the predefined standard
reports. Dredge cycle phase recognition and time usage reporting proved to be robust and
accurate in practice. Automatic production measurement is still under evaluation.

SUMMARY

This paper described the design and implementation of a ‘Dredging Information System’ for
the supervision and follow-up of the dredging works on the river Scheldt. The general
purpose of this system is to gather all information relevant to the maintenance dredging
works and to provide the means to process, present and report these data.

Future plans for the system involve incorporation of a linkage between morphological
processes and dredging. A known problem here is the availability of field data which can be
used to set up, calibrate and evaluate mathematical models. The goal of future work would be
to collect information about the exact amount of material that has been dredged or relocated
on different locations in the river. The registration system on board keeps track of the amount
of material that was dredged or relocated on every location during one week. The data is be
collected in a grid (measuring between 5x5 meters and 10x10 meters). The amounts are
obtained by distributing the trip production over the track sailed by the vessel during the trip.
The total trip production - that can only be measured at the end of the trip - is not distributed
uniformly over the track : for each position it is weighted by the suction production on that
position.

For every dredger, the data for one week is exported to a central computer. The data on the
central computer consists of ‘grids’ containing the total amount dredged or relocated in the
grid cells. These grid-data are managed by a database. The database allows to filter the data
on a time base (from week, to week) and on a geographical base (a specified dredging or
disposal area or an arbitrary area on the river). Software allows to process the data : for a
specified region and period totals can be computed. The results can be shown graphically or
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can be exported for use in other software (e.g. GIS programs). It is also possible to compute
and show the evolution of the total amount dredged or relocated over a period.
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NOTATIONS
Translations of some Dutch words in computer printout figures are given below.
Dutch English
diepte depth
diepte water depth relative to waterline
diepte GLLWS depth relative to a reference level
getij tide
getij - GLLWS tide relative to a reference level
getijpost tide measuring station
herteken redraw map
koers course over ground
lading load
limieten limits
midden center point
omvang map extent
opheffen cancel
schaal map scale
snelheid speed
snelheid - dwars transverse speed
snelheid - langs forward speed
snelp. name of the tide reception chain
toon show (redraw) map
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both word processed and ASCII forms, the word processing package used, and the operating system.

Headings
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and lower case letters should be used for subheadings, which should be preceded and followed by a double

space as illustrated by these instructions. Sub-subheadings should use bold capitals and lower case letters
and placed at the start of the paragraph.
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Equations

All symbols must be defined in the nomenclature section that follows the conclusions. The SI system of
units should be used. If units other than SI units are included, they should be given in parenthesis after the
relevant SI unit. Equations should be successively numbered (in parenthesis) flush with the right-hand
margin (see example below).
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Page numbers
Page numbers should be marked in pencil and placed at the bottom center of each page.

Figures and Tables

High quality figures and tables should be incorporated into the body of the text. Figures must not be placed
at the end of the paper. Leave spaces for photographs. Figure captions should be below the figure; table
captions should be above the table.

Line drawings

The lines and lettering on the figures should be clearly legible. If originals cannot be supplied, ONLY
BLACK AND WHITE COPIES OF VERY HIGH QUALITY are suitable for reproduction. PENCIL AND
PHOTOCOPIES OR COPIES WITH A BACKGROUND COLOR ARE NOT SUITABLE.

Photographs

Photographs must be sharp, high contrast, glossy prints. Please use a pencil to indicate the title of the
paper, figure number and title and top edge on the back of each photograph. Paste in the photographs
where they should appear in the final manuscript. Place captions under the photograph as part of the text.
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